BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38692266)

  • 1. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.
    Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer.
    Attaluri A; Kandala SK; Wabler M; Zhou H; Cornejo C; Armour M; Hedayati M; Zhang Y; DeWeese TL; Herman C; Ivkov R
    Int J Hyperthermia; 2015 Jun; 31(4):359-74. PubMed ID: 25811736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia.
    Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O
    ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles.
    Kalber TL; Ordidge KL; Southern P; Loebinger MR; Kyrtatos PG; Pankhurst QA; Lythgoe MF; Janes SM
    Int J Nanomedicine; 2016; 11():1973-83. PubMed ID: 27274229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Heating Stimulated Cargo Release with Dose Control using Multifunctional MR and Thermosensitive Liposome.
    Ray S; Cheng CA; Chen W; Li Z; Zink JI; Lin YY
    Nanotheranostics; 2019; 3(2):166-178. PubMed ID: 31183312
    [No Abstract]   [Full Text] [Related]  

  • 11. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls.
    Tsiapla AR; Kalimeri AA; Maniotis N; Myrovali E; Samaras T; Angelakeris M; Kalogirou O
    Int J Hyperthermia; 2021; 38(1):511-522. PubMed ID: 33784924
    [No Abstract]   [Full Text] [Related]  

  • 14. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia.
    Demessie AA; Park Y; Singh P; Moses AS; Korzun T; Sabei FY; Albarqi HA; Campos L; Wyatt CR; Farsad K; Dhagat P; Sun C; Taratula OR; Taratula O
    Small Methods; 2022 Dec; 6(12):e2200916. PubMed ID: 36319445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia.
    Kandala SK; Sharma A; Mirpour S; Liapi E; Ivkov R; Attaluri A
    Int J Hyperthermia; 2021; 38(1):611-622. PubMed ID: 33853493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles.
    Murase K; Oonoki J; Takata H; Song R; Angraini A; Ausanai P; Matsushita T
    Radiol Phys Technol; 2011 Jul; 4(2):194-202. PubMed ID: 21667079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia.
    Yamamoto Y; Itoh T; Irieda T
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe
    Suleman M; Riaz S
    J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.