These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38692284)

  • 41. Photocontrollable Elongation Actuation of Liquid Crystal Elastomer Films with Well-Defined Crease Structures.
    Huang Y; Xu Y; Bisoyi HK; Liu Z; Wang J; Tao Y; Yang T; Huang S; Yang H; Li Q
    Adv Mater; 2023 Sep; 35(36):e2304378. PubMed ID: 37421658
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Artificial muscles based on synthetic dielectric elastomers.
    Pei Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6826-9. PubMed ID: 19964914
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds.
    Pei Z; Yang Y; Chen Q; Terentjev EM; Wei Y; Ji Y
    Nat Mater; 2014 Jan; 13(1):36-41. PubMed ID: 24292422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite.
    Ford MJ; Palaniswamy M; Ambulo CP; Ware TH; Majidi C
    Soft Matter; 2020 Jul; 16(25):5878-5885. PubMed ID: 32412038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electroresponsive Ionic Liquid Crystal Elastomers.
    Feng C; Rajapaksha CPH; Cedillo JM; Piedrahita C; Cao J; Kaphle V; Lüssem B; Kyu T; Jákli A
    Macromol Rapid Commun; 2019 Oct; 40(19):e1900299. PubMed ID: 31348584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Realizing the potential of dielectric elastomer artificial muscles.
    Duduta M; Hajiesmaili E; Zhao H; Wood RJ; Clarke DR
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2476-2481. PubMed ID: 30679271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient, Absorption-Powered Artificial Muscles Based on Carbon Nanotube Hybrid Yarns.
    Lima MD; Hussain MW; Spinks GM; Naficy S; Hagenasr D; Bykova JS; Tolly D; Baughman RH
    Small; 2015 Jul; 11(26):3113-8. PubMed ID: 25755113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human muscle-like actuation realized with graphene-liquid crystalline elastomer composites.
    Nat Nanotechnol; 2022 Nov; 17(11):1132-1133. PubMed ID: 36319755
    [No Abstract]   [Full Text] [Related]  

  • 49. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process.
    Tu Z; Liu W; Wang J; Qiu X; Huang J; Li J; Lou H
    Nat Commun; 2021 May; 12(1):2916. PubMed ID: 34006839
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biocompatible liquid-crystal elastomers mimic the intervertebral disc.
    Shaha RK; Merkel DR; Anderson MP; Devereaux EJ; Patel RR; Torbati AH; Willett N; Yakacki CM; Frick CP
    J Mech Behav Biomed Mater; 2020 Jul; 107():103757. PubMed ID: 32276188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers.
    Shahsavan H; Salili SM; Jákli A; Zhao B
    Adv Mater; 2015 Nov; 27(43):6828-33. PubMed ID: 26418411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions.
    Yang H; Buguin A; Taulemesse JM; Kaneko K; Méry S; Bergeret A; Keller P
    J Am Chem Soc; 2009 Oct; 131(41):15000-4. PubMed ID: 19778041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical wavelength selective actuation of dye doped liquid crystalline elastomers by quasi-daylight.
    Zhang X; Yao L; Yan H; Zhang Y; Han D; He Y; Li C; Zhang J
    Soft Matter; 2022 Dec; 18(48):9181-9196. PubMed ID: 36437786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators.
    Kim K; Guo Y; Bae J; Choi S; Song HY; Park S; Hyun K; Ahn SK
    Small; 2021 Jun; 17(23):e2100910. PubMed ID: 33938152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle.
    Lee J; Ko S; Kwon CH; Lima MD; Baughman RH; Kim SJ
    Small; 2016 Apr; 12(15):2085-91. PubMed ID: 26929006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-plied and twist-stable carbon nanotube yarn artificial muscles driven by organic solvent adsorption.
    Jin K; Zhang S; Zhou S; Qiao J; Song Y; Di J; Zhang D; Li Q
    Nanoscale; 2018 May; 10(17):8180-8186. PubMed ID: 29676416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient.
    Zhang C; Lu X; Fei G; Wang Z; Xia H; Zhao Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44774-44782. PubMed ID: 31692319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction.
    Saed MO; Torbati AH; Nair DP; Yakacki CM
    J Vis Exp; 2016 Jan; (107):e53546. PubMed ID: 26862925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent progress in dynamic covalent chemistries for liquid crystal elastomers.
    Wang Z; Cai S
    J Mater Chem B; 2020 Aug; 8(31):6610-6623. PubMed ID: 32555841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.