BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38692322)

  • 1. Predicting the new psychoactive substance activity of antitussives and evaluating their ecotoxicity to fish.
    Shi WJ; Long XB; Xin L; Chen CE; Ying GG
    Sci Total Environ; 2024 Jul; 932():172872. PubMed ID: 38692322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory.
    Takata M; Lin BL; Xue M; Zushi Y; Terada A; Hosomi M
    Chemosphere; 2020 Jan; 238():124604. PubMed ID: 31450113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening androgen receptor agonists of fish species using machine learning and molecular model in NORMAN water-relevant list.
    Long XB; Yao CR; Li SY; Zhang JG; Lu ZJ; Ma DD; Chen CE; Ying GG; Shi WJ
    J Hazard Mater; 2024 Apr; 468():133844. PubMed ID: 38394900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels.
    Droge STJ; Hodges G; Bonnell M; Gutsell S; Roberts J; Teixeira A; Barrett EL
    Environ Sci Process Impacts; 2023 Mar; 25(3):621-647. PubMed ID: 36779707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.
    Gartiser S; Hafner C; Hercher C; Kronenberger-SchÀfer K; Paschke A
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1149-57. PubMed ID: 20127188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish.
    Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F
    Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute exposure to waterborne psychoactive drugs attract zebrafish.
    Abreu MS; Giacomini AC; Gusso D; Rosa JG; Koakoski G; Kalichak F; IdalĂȘncio R; Oliveira TA; Barcellos HH; Bonan CD; Barcellos LJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Jan; 179():37-43. PubMed ID: 26325205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antitussives and substance abuse.
    Burns JM; Boyer EW
    Subst Abuse Rehabil; 2013; 4():75-82. PubMed ID: 24648790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central and peripheral mechanisms of narcotic antitussives: codeine-sensitive and -resistant coughs.
    Takahama K; Shirasaki T
    Cough; 2007 Jul; 3():8. PubMed ID: 17620111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.
    de Morais E Silva L; Alves MF; Scotti L; Lopes WS; Scotti MT
    Ecotoxicol Environ Saf; 2018 May; 153():151-159. PubMed ID: 29427976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dextromethorphan and dextrorphan in rats: common antitussives--different behavioural profiles.
    Dematteis M; Lallement G; Mallaret M
    Fundam Clin Pharmacol; 1998; 12(5):526-37. PubMed ID: 9794151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of modes of action between fish and zebrafish embryo toxicity for baseline, less inert, reactive and specifically-acting compounds.
    Zhu D; Li TT; Zheng SS; Yan LC; Wang Y; Fan LY; Li C; Zhao YH
    Chemosphere; 2018 Dec; 213():414-422. PubMed ID: 30243207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish.
    Moore DR; Breton RL; MacDonald DB
    Environ Toxicol Chem; 2003 Aug; 22(8):1799-809. PubMed ID: 12924579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence, ecotoxicity and ecological risks of psychoactive substances in surface waters.
    Ding L; Zhang CM
    Sci Total Environ; 2024 May; 926():171788. PubMed ID: 38499097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicological quantitative structure-activity relationships for pharmaceuticals.
    Sanderson H; Thomsen M
    Bull Environ Contam Toxicol; 2007 Sep; 79(3):331-5. PubMed ID: 17701090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning-Assisted Rapid Screening of Four Types of New Psychoactive Substances in Drug Seizures.
    Yang Y; Liu D; Hua Z; Xu P; Wang Y; Di B; Liao J; Su M
    J Chem Inf Model; 2023 Feb; 63(3):815-825. PubMed ID: 36645156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Severe Respiratory Depression and Codeine-Containing Antitussives in Children: A Nested Case-Control Study.
    Ono S; Ono Y; Koide D; Yasunaga H
    J Epidemiol; 2020 Mar; 30(3):116-120. PubMed ID: 30828036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AddictedChem: A Data-Driven Integrated Platform for New Psychoactive Substance Identification.
    Han M; Liu S; Zhang D; Zhang R; Liu D; Xing H; Sun D; Gong L; Cai P; Tu W; Chen J; Hu QN
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions.
    Shaw BJ; Handy RD
    Environ Int; 2011 Aug; 37(6):1083-97. PubMed ID: 21474182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.