BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38692375)

  • 1. Methanotrophs mediated biogas valorization: Sustainable route to polyhydroxybutyrate production.
    Hyun SW; Krishna S; Chau THT; Lee EY
    Bioresour Technol; 2024 Jun; 402():130759. PubMed ID: 38692375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of a Genome Scale Metabolic Model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP.
    Bordel S; Rojas A; Muñoz R
    Microb Cell Fact; 2019 Jun; 18(1):104. PubMed ID: 31170985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of polyhydroxybutyrate from methane and carbon dioxide using type II methanotrophs.
    Pham DN; Mai DHA; Lee EY
    Bioresour Technol; 2024 Aug; 405():130931. PubMed ID: 38838829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogas bioconversion into poly(3-hydroxybutyrate) by a mixed microbial culture in a novel Taylor flow bioreactor.
    Cattaneo CR; Rodríguez Y; Rene ER; García-Depraect O; Muñoz R
    Waste Manag; 2022 Aug; 150():364-372. PubMed ID: 35914413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomic analysis of Methylocystis sp. MJC1 as a platform strain for polyhydroxybutyrate biosynthesis.
    Naizabekov S; Hyun SW; Na JG; Yoon S; Lee OK; Lee EY
    PLoS One; 2023; 18(5):e0284846. PubMed ID: 37163531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), using the type II methanotroph, Methylocystis sp. MJC1.
    Lee OK; Kang SG; Choi TR; Yang YH; Lee EY
    Bioresour Technol; 2023 Dec; 389():129853. PubMed ID: 37813313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP.
    Rostkowski KH; Pfluger AR; Criddle CS
    Bioresour Technol; 2013 Mar; 132():71-7. PubMed ID: 23395757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the influence of environmental factors on biogas-based polyhydroxybutyrate production by Methylocystis hirsuta CSC1.
    Rodríguez Y; Firmino PIM; Arnáiz E; Lebrero R; Muñoz R
    Sci Total Environ; 2020 Mar; 706():135136. PubMed ID: 31862586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge.
    Eam H; Ko D; Lee C; Myung J
    Microb Cell Fact; 2024 May; 23(1):160. PubMed ID: 38822346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of methane to oxygen ratio on cell growth and polyhydroxybutyrate synthesis in high cell density cultivation of Methylocystis sp. MJC1.
    Hong HJ; Hyung JS; Lee J; Na JG
    Environ Sci Pollut Res Int; 2024 May; ():. PubMed ID: 38713354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell.
    Lazic M; Gudneppanavar R; Whiddon K; Sauvageau D; Stein LY; Konopka M
    Appl Microbiol Biotechnol; 2022 Jan; 106(2):811-819. PubMed ID: 34921330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture.
    Helm J; Wendlandt KD; Jechorek M; Stottmeister U
    J Appl Microbiol; 2008 Oct; 105(4):1054-61. PubMed ID: 18422550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibilities for controlling a PHB accumulation process using various analytical methods.
    Wendlandt KD; Geyer W; Mirschel G; Al-Haj Hemidi F
    J Biotechnol; 2005 Apr; 117(1):119-29. PubMed ID: 15831253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Producing poly-3-hydroxybutyrate with a high molecular mass from methane.
    Wendlandt KD; Jechorek M; Helm J; Stottmeister U
    J Biotechnol; 2001 Mar; 86(2):127-33. PubMed ID: 11245901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH 3.
    Cáceres M; Gentina JC; Aroca G
    Biotechnol Lett; 2014 Jan; 36(1):69-74. PubMed ID: 24068504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor.
    Rodríguez Y; Firmino PIM; Pérez V; Lebrero R; Muñoz R
    Waste Manag; 2020 Jul; 113():395-403. PubMed ID: 32585559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back).
    Rostkowski KH; Criddle CS; Lepech MD
    Environ Sci Technol; 2012 Sep; 46(18):9822-9. PubMed ID: 22775327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system.
    Helm J; Wendlandt KD; Rogge G; Kappelmeyer U
    J Appl Microbiol; 2006 Aug; 101(2):387-95. PubMed ID: 16882146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis.
    Bordel S; Rodríguez Y; Hakobyan A; Rodríguez E; Lebrero R; Muñoz R
    Metab Eng; 2019 Jul; 54():191-199. PubMed ID: 30999053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of nitrogen feeding strategies for improving polyhydroxybutyrate production from biogas by Methylocystis parvus str. OBBP in a stirred tank reactor.
    Rodríguez Y; García S; Pérez R; Lebrero R; Muñoz R
    Chemosphere; 2022 Jul; 299():134443. PubMed ID: 35364084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.