BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38692377)

  • 21. [Isolation and characterization of a cellobiose dehydrogenase formed by a asporogenic mycelial fungus INBI 2-26(-)].
    Karapetian KN; Iachkova SN; Vasil'chenko LG; Borzykh MN; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2003; 39(6):642-51. PubMed ID: 14714477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2',3,4-trihydroxychalcone.
    Zerva A; Koutroufini E; Kostopoulou I; Detsi A; Topakas E
    N Biotechnol; 2019 Mar; 49():10-18. PubMed ID: 30529567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition.
    Hildebrand A; Kasuga T; Fan Z
    PLoS One; 2015; 10(4):e0123006. PubMed ID: 25849253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Higham CW; Gordon-Smith D; Dempsey CE; Wood PM
    FEBS Lett; 1994 Aug; 351(1):128-32. PubMed ID: 8076681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii.
    Baminger U; Subramaniam SS; Renganathan V; Haltrich D
    Appl Environ Microbiol; 2001 Apr; 67(4):1766-74. PubMed ID: 11282631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently.
    Kiryu T; Nakano H; Kiso T; Murakami H
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):833-41. PubMed ID: 18323642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli.
    Desriani ; Ferri S; Sode K
    Biotechnol Lett; 2010 Jun; 32(6):855-9. PubMed ID: 20140751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.
    Kadek A; Kavan D; Marcoux J; Stojko J; Felice AK; Cianférani S; Ludwig R; Halada P; Man P
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):157-167. PubMed ID: 27851982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast surface display of dehydrogenases in microbial fuel-cells.
    Gal I; Schlesinger O; Amir L; Alfonta L
    Bioelectrochemistry; 2016 Dec; 112():53-60. PubMed ID: 27459246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid kinetic studies of the reduction of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum by cellobiose.
    Jones GD; Wilson MT
    Biochem J; 1988 Dec; 256(3):713-8. PubMed ID: 3223948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellobiose dehydrogenase hosted in lipidic cubic phase to improve catalytic activity and stability.
    Grippo V; Ma S; Ludwig R; Gorton L; Bilewicz R
    Bioelectrochemistry; 2019 Feb; 125():134-141. PubMed ID: 29128298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer-aided search for a cold-active cellobiose 2-epimerase.
    Chen Q; Xiao Y; Zhang W; Stressler T; Fischer L; Jiang B; Mu W
    J Dairy Sci; 2020 Sep; 103(9):7730-7741. PubMed ID: 32684457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactions of reduced cellobiose oxidase with oxygen. Is cellobiose oxidase primarily an oxidase?
    Wilson MT; Hogg N; Jones GD
    Biochem J; 1990 Aug; 270(1):265-7. PubMed ID: 2396987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase.
    Kadek A; Kavan D; Felice AK; Ludwig R; Halada P; Man P
    FEBS Lett; 2015 May; 589(11):1194-9. PubMed ID: 25862501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8: a hyperthermostable aldose-1-dehydrogenase with broad substrate specificity.
    Asada Y; Endo S; Inoue Y; Mamiya H; Hara A; Kunishima N; Matsunaga T
    Chem Biol Interact; 2009 Mar; 178(1-3):117-26. PubMed ID: 18926808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.
    Cannella D; Hsieh CW; Felby C; Jørgensen H
    Biotechnol Biofuels; 2012 Apr; 5(1):26. PubMed ID: 22546481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides.
    Mallek-Fakhfakh H; Belghith H
    Carbohydr Res; 2016 Jan; 419():41-50. PubMed ID: 26649918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isobutanol production from cellobionic acid in Escherichia coli.
    Desai SH; Rabinovitch-Deere CA; Fan Z; Atsumi S
    Microb Cell Fact; 2015 Apr; 14():52. PubMed ID: 25889729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.
    Vasilchenko LG; Ludwig R; Yershevich OP; Haltrich D; Rabinovich ML
    Biotechnol J; 2012 Jul; 7(7):919-30. PubMed ID: 22294389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissecting cellobiose metabolic pathway and its application in biorefinery through consolidated bioprocessing in
    Li J; Gu S; Zhao Z; Chen B; Liu Q; Sun T; Sun W; Tian C
    Fungal Biol Biotechnol; 2019; 6():21. PubMed ID: 31754437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.