These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38692475)

  • 1. Theophylline-based control of repA on a Clostridioides difficile plasmid for use in allelic exchange.
    Brehm JN; Sorg JA
    Anaerobe; 2024 Aug; 88():102858. PubMed ID: 38692475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation.
    Maikova A; Boudry P; Shiriaeva A; Vasileva A; Boutserin A; Medvedeva S; Semenova E; Severinov K; Soutourina O
    mBio; 2021 Aug; 12(4):e0213621. PubMed ID: 34425703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system.
    Ingle P; Groothuis D; Rowe P; Huang H; Cockayne A; Kuehne SA; Jiang W; Gu Y; Humphreys CM; Minton NP
    Sci Rep; 2019 May; 9(1):8123. PubMed ID: 31148548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of editing plasmid mediated by theophylline riboswitch in Zymomonas mobilis.
    Huang Y; Chen M; Hu G; Wu B; He M
    Appl Microbiol Biotechnol; 2023 Dec; 107(23):7151-7163. PubMed ID: 37728624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production.
    Ahmed UKB; Shadid TM; Larabee JL; Ballard JD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33443122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles.
    Ng YK; Ehsaan M; Philip S; Collery MM; Janoir C; Collignon A; Cartman ST; Minton NP
    PLoS One; 2013; 8(2):e56051. PubMed ID: 23405251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of ClpP Dual Isoform Disruption as an Antisporulation Strategy for Clostridioides difficile.
    Bishop CE; Shadid TM; Lavey NP; Kempher ML; Ballard JD; Duerfeldt AS
    J Bacteriol; 2022 Feb; 204(2):e0041121. PubMed ID: 34807726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in
    Muzyukina P; Shkaruta A; Guzman NM; Andreani J; Borges AL; Bondy-Denomy J; Maikova A; Semenova E; Severinov K; Soutourina O
    mSphere; 2023 Dec; 8(6):e0040123. PubMed ID: 38009936
    [No Abstract]   [Full Text] [Related]  

  • 10. Second messenger signaling in Clostridioides difficile.
    Purcell EB
    Curr Opin Microbiol; 2022 Feb; 65():138-144. PubMed ID: 34864551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors and Conditions That Impact Electroporation of Clostridioides difficile Strains.
    Bhattacharjee D; Sorg JA
    mSphere; 2020 Mar; 5(2):. PubMed ID: 32132157
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Selle K; Fletcher JR; Tuson H; Schmitt DS; McMillan L; Vridhambal GS; Rivera AJ; Montgomery SA; Fortier LC; Barrangou R; Theriot CM; Ousterout DG
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156803
    [No Abstract]   [Full Text] [Related]  

  • 13. Revealing roles of S-layer protein (SlpA) in
    Wang S; Courreges MC; Xu L; Gurung B; Berryman M; Gu T
    Microbiol Spectr; 2024 Jun; 12(6):e0400523. PubMed ID: 38709045
    [No Abstract]   [Full Text] [Related]  

  • 14. Carriage of three plasmids in a single human clinical isolate of Clostridioides difficile.
    Roseboom AM; Ducarmon QR; Hornung BVH; Harmanus C; Crobach MJT; Kuijper EJ; Vossen RHAM; Kloet SL; Smits WK
    Plasmid; 2023; 125():102669. PubMed ID: 36572199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Genome Editing in Clostridium difficile Using the CRISPR-Cpf1 System.
    Hong W; Zhang J; Cui G; Zhou Q; Wang P; Wang Y
    Methods Mol Biol; 2022; 2479():175-187. PubMed ID: 35583739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type I toxin-antitoxin systems contribute to the maintenance of mobile genetic elements in Clostridioides difficile.
    Peltier J; Hamiot A; Garneau JR; Boudry P; Maikova A; Hajnsdorf E; Fortier LC; Dupuy B; Soutourina O
    Commun Biol; 2020 Nov; 3(1):718. PubMed ID: 33247281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory Targets of the Response Regulator RR_1586 from Clostridioides difficile Identified Using a Bacterial One-Hybrid Screen.
    Hebdon SD; Menon SK; Richter-Addo GB; Karr EA; West AH
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium difficile Genome Editing Using pyrE Alleles.
    Ehsaan M; Kuehne SA; Minton NP
    Methods Mol Biol; 2016; 1476():35-52. PubMed ID: 27507332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface.
    Oliveira Paiva AM; de Jong L; Friggen AH; Smits WK; Corver J
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32868401
    [No Abstract]   [Full Text] [Related]  

  • 20. Riboswitch Signal Amplification by Controlling Plasmid Copy Number.
    Dwidar M; Yokobayashi Y
    ACS Synth Biol; 2019 Feb; 8(2):245-250. PubMed ID: 30682247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.