BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38692549)

  • 1. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity.
    Ahmed WS; Geethakumari AM; Sultana A; Fatima A; Philip AM; Uddin SMN; Biswas KH
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131864. PubMed ID: 38692549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel NanoLuc-type substrates with various C-6 substitutions.
    Yan C; Du L; Li M
    Bioorg Med Chem Lett; 2020 May; 30(9):127085. PubMed ID: 32171617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence.
    England CG; Ehlerding EB; Cai W
    Bioconjug Chem; 2016 May; 27(5):1175-1187. PubMed ID: 27045664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca
    Kudryavtsev AN; Krasitskaya VV; Efremov MK; Zangeeva SV; Rogova AV; Tomilin FN; Frank LA
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luciferase NLuc Site-Specific Conjugation to Generate Reporters for In Vitro Assays.
    Krasitskaya VV; Efremov MK; Frank LA
    Bioconjug Chem; 2023 Jul; 34(7):1282-1289. PubMed ID: 37334720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of firefly luciferase and NanoLuc luciferase for biophotonic labeling of group A Streptococcus.
    Loh JM; Proft T
    Biotechnol Lett; 2014 Apr; 36(4):829-34. PubMed ID: 24322775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Amber-Emitting Nano Luciferase and Its Use for Immunobioluminescence Imaging
    Xiong Y; Zhang Y; Li Z; Reza MS; Li X; Tian X; Ai HW
    J Am Chem Soc; 2022 Aug; 144(31):14101-14111. PubMed ID: 35913786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of NanoLuc substrates for bioluminescence imaging of transferred cells in mice.
    Gaspar N; Walker JR; Zambito G; Marella-Panth K; Lowik C; Kirkland TA; Mezzanotte L
    J Photochem Photobiol B; 2021 Mar; 216():112128. PubMed ID: 33529963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals.
    Su Y; Walker JR; Park Y; Smith TP; Liu LX; Hall MP; Labanieh L; Hurst R; Wang DC; Encell LP; Kim N; Zhang F; Kay MA; Casey KM; Majzner RG; Cochran JR; Mackall CL; Kirkland TA; Lin MZ
    Nat Methods; 2020 Aug; 17(8):852-860. PubMed ID: 32661427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Series of Furimazine Derivatives for Sustained Live-Cell Bioluminescence Imaging and Application to the Monitoring of Myogenesis at the Single-Cell Level.
    Orioka M; Eguchi M; Mizui Y; Ikeda Y; Sakama A; Li Q; Yoshimura H; Ozawa T; Citterio D; Hiruta Y
    Bioconjug Chem; 2022 Mar; 33(3):496-504. PubMed ID: 35184558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging.
    Li E; Brennan CK; Ramirez A; Tucker JA; Butkovich N; Meli VS; Ionkina AA; Nelson EL; Prescher JA; Wang SW
    Mater Today Bio; 2022 Dec; 17():100455. PubMed ID: 36304975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle.
    De Niz M; Stanway RR; Wacker R; Keller D; Heussler VT
    Malar J; 2016 Apr; 15():232. PubMed ID: 27102897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NanoLuc luciferase as a suitable fusion partner of recombinant antibody fragments for developing sensitive luminescent immunoassays.
    Oyama H; Kiguchi Y; Morita I; Miyashita T; Ichimura A; Miyaoka H; Izumi A; Terasawa S; Osumi N; Tanaka H; Niwa T; Kobayashi N
    Anal Chim Acta; 2021 May; 1161():238180. PubMed ID: 33896564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoluciferase as a novel quantitative protein fusion tag: Application for overexpression and bioluminescent receptor-binding assays of human leukemia inhibitory factor.
    He SX; Song G; Shi JP; Guo YQ; Guo ZY
    Biochimie; 2014 Nov; 106():140-8. PubMed ID: 25179300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Unfolding and Refolding of NanoLuc via Single-Molecule Force Spectroscopy and Computer Simulations.
    Apostolidou D; Zhang P; Yang W; Marszalek PE
    Biomacromolecules; 2022 Dec; 23(12):5164-5178. PubMed ID: 36350253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Stability of a Small, Highly-Luminescent Engineered Protein NanoLuc.
    Ding Y; Apostolidou D; Marszalek P
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374567
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Berlec A; Janež N; Sterniša M; Klančnik A; Sabotič J
    Bio Protoc; 2022 Feb; 12(3):e4308. PubMed ID: 35284607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.
    Mo XL; Fu H
    Methods Mol Biol; 2016; 1439():263-71. PubMed ID: 27317001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Potent Cell-Permeable and Impermeable NanoLuc Luciferase Inhibitors.
    Walker JR; Hall MP; Zimprich CA; Robers MB; Duellman SJ; Machleidt T; Rodriguez J; Zhou W
    ACS Chem Biol; 2017 Apr; 12(4):1028-1037. PubMed ID: 28195704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Ionic Strength Sensing Using NanoLuc.
    Altamash T; Ahmed W; Rasool S; Biswas KH
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.