These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38692672)

  • 1. Single-Step Control of Liquid-Liquid Crystalline Phase Separation by Depletion Gradients.
    Lin D; Bagnani M; Almohammadi H; Yuan Y; Zhao Y; Mezzenga R
    Adv Mater; 2024 Jul; 36(28):e2312564. PubMed ID: 38692672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-liquid crystalline phase separation in biological filamentous colloids: nucleation, growth and order-order transitions of cholesteric tactoids.
    Azzari P; Bagnani M; Mezzenga R
    Soft Matter; 2021 Jul; 17(27):6627-6636. PubMed ID: 34143859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporation-Driven Liquid-Liquid Crystalline Phase Separation in Droplets of Anisotropic Colloids.
    Almohammadi H; Fu Y; Mezzenga R
    ACS Nano; 2023 Feb; 17(3):3098-3106. PubMed ID: 36719319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Selective Exclusion Effects of Liquid Crystalline Tactoids on Nanoparticles: A Separation Method.
    Wang PX; Hamad WY; MacLachlan MJ
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3360-3365. PubMed ID: 29380473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape and structural relaxation of colloidal tactoids.
    Almohammadi H; Khadem SA; Bagnani M; Rey AD; Mezzenga R
    Nat Commun; 2022 May; 13(1):2778. PubMed ID: 35589676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamically controlled multiphase separation of heterogeneous liquid crystal colloids.
    Tao H; Rigoni C; Li H; Koistinen A; Timonen JVI; Zhou J; Kontturi E; Rojas OJ; Chu G
    Nat Commun; 2023 Aug; 14(1):5277. PubMed ID: 37644027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling kinetics from thermodynamics in heterogeneous colloidal systems.
    Almohammadi H; Martinek S; Yuan Y; Fischer P; Mezzenga R
    Nat Commun; 2023 Feb; 14(1):607. PubMed ID: 36739286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nematic to Cholesteric Transformation in the Cellulose Nanocrystal Droplet Phase.
    Joynul Abedin M; van der Schoot P; Garnier G; Majumder M
    Langmuir; 2023 May; 39(17):6142-6150. PubMed ID: 37022793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal nucleation in colloidal rod suspensions: The effect of depletant size.
    Wood JA; Liu Y; Widmer-Cooper A
    J Chem Phys; 2021 Jun; 154(24):244505. PubMed ID: 34241344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-induced order-order transitions in amyloid fibril liquid crystalline tactoids.
    Almohammadi H; Bagnani M; Mezzenga R
    Nat Commun; 2020 Oct; 11(1):5416. PubMed ID: 33110064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystalline behavior of graphene oxide in the formation and deformation of tough nanocomposite hydrogels.
    Zhu Z; Song G; Liu J; Whitten PG; Liu L; Wang H
    Langmuir; 2014 Dec; 30(48):14648-57. PubMed ID: 25403024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of Colloidal Nanoplate Liquid Crystals Using Temperature Gradients.
    Shinde A; Huang D; Saldivar M; Xu H; Zeng M; Okeibunor U; Wang L; Mejia C; Tin P; George S; Zhang L; Cheng Z
    ACS Nano; 2019 Nov; 13(11):12461-12469. PubMed ID: 31633342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose Nanocrystal Aqueous Colloidal Suspensions: Evidence of Density Inversion at the Isotropic-Liquid Crystal Phase Transition.
    da Rosa RR; Silva PES; Saraiva DV; Kumar A; de Sousa APM; Sebastião P; Fernandes SN; Godinho MH
    Adv Mater; 2022 Jul; 34(28):e2108227. PubMed ID: 35502142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal Liquid Crystals Confined to Synthetic Tactoids.
    Gârlea IC; Dammone O; Alvarado J; Notenboom V; Jia Y; Koenderink GH; Aarts DGAL; Lettinga MP; Mulder BM
    Sci Rep; 2019 Dec; 9(1):20391. PubMed ID: 31892707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries.
    Wang PX; MacLachlan MJ
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals.
    Kim YK; Shiyanovskii SV; Lavrentovich OD
    J Phys Condens Matter; 2013 Oct; 25(40):404202. PubMed ID: 24025849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid-Liquid Phase Separation.
    Yuan C; Levin A; Chen W; Xing R; Zou Q; Herling TW; Challa PK; Knowles TPJ; Yan X
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18116-18123. PubMed ID: 31617663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LLPS
    Azzari P; Mezzenga R
    Soft Matter; 2023 Mar; 19(10):1873-1881. PubMed ID: 36806460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behavior of colloid-polymer depletion mixtures with unary or binary depletants.
    Park N; Conrad JC
    Soft Matter; 2017 Apr; 13(15):2781-2792. PubMed ID: 28345105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of polymer nonideality on depletion-induced phase behaviour of colloidal disks and rods.
    Peters VFD; Tuinier R; Vis M
    J Phys Condens Matter; 2022 Feb; 34(14):. PubMed ID: 35038683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.