BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38692814)

  • 1. Applications of Artificial Intelligence in Lung Pathology.
    Hartman DJ
    Surg Pathol Clin; 2024 Jun; 17(2):321-328. PubMed ID: 38692814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Artificial Intelligence in Precise Assessment of Programmed Cell Death-ligand 1 and Tumor-infiltrating Lymphocytes in Non-Small Cell Lung Cancer.
    Wu J; Lin D
    Adv Anat Pathol; 2021 Nov; 28(6):439-445. PubMed ID: 34623343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer.
    Rabbani M; Kanevsky J; Kafi K; Chandelier F; Giles FJ
    Eur J Clin Invest; 2018 Apr; 48(4):. PubMed ID: 29405289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-scale categorization based deep learning to evaluate programmed cell death ligand 1 expression in non-small cell lung cancer.
    Wang X; Chen P; Ding G; Xing Y; Tang R; Peng C; Ye Y; Fu Q
    Medicine (Baltimore); 2021 May; 100(20):e25994. PubMed ID: 34011092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating AI-Powered Digital Pathology and Imaging Mass Cytometry Identifies Key Classifiers of Tumor Cells, Stroma, and Immune Cells in Non-Small Cell Lung Cancer.
    Rigamonti A; Viatore M; Polidori R; Rahal D; Erreni M; Fumagalli MR; Zanini D; Doni A; Putignano AR; Bossi P; Voulaz E; Alloisio M; Rossi S; Zucali PA; Santoro A; Balzano V; Nisticò P; Feuerhake F; Mantovani A; Locati M; Marchesi F
    Cancer Res; 2024 Apr; 84(7):1165-1177. PubMed ID: 38315789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence-powered programmed death ligand 1 analyser reduces interobserver variation in tumour proportion score for non-small cell lung cancer with better prediction of immunotherapy response.
    Choi S; Cho SI; Ma M; Park S; Pereira S; Aum BJ; Shin S; Paeng K; Yoo D; Jung W; Ock CY; Lee SH; Choi YL; Chung JH; Mok TS; Kim H; Kim S
    Eur J Cancer; 2022 Jul; 170():17-26. PubMed ID: 35576849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning and Artificial Intelligence-driven Spatial Analysis of the Tumor Immune Microenvironment in Pathology Slides.
    Xu H; Cong F; Hwang TH
    Eur Urol Focus; 2021 Jul; 7(4):706-709. PubMed ID: 34353733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Artificial Intelligence to Identify Tumor Microenvironment Heterogeneity in Non-Small Cell Lung Cancers.
    DuCote TJ; Naughton KJ; Skaggs EM; Bocklage TJ; Allison DB; Brainson CF
    Lab Invest; 2023 Aug; 103(8):100176. PubMed ID: 37182840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of Machine Learning to Detect Cytomegalovirus in Digital Hematoxylin and Eosin-Stained Slides.
    Post CS; Cheng J; Pantanowitz L; Westerhoff M
    Lab Invest; 2023 Oct; 103(10):100225. PubMed ID: 37527779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence as the next step towards precision pathology.
    Acs B; Rantalainen M; Hartman J
    J Intern Med; 2020 Jul; 288(1):62-81. PubMed ID: 32128929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence-Aided Diagnosis of Breast Cancer Lymph Node Metastasis on Histologic Slides in a Digital Workflow.
    Challa B; Tahir M; Hu Y; Kellough D; Lujan G; Sun S; Parwani AV; Li Z
    Mod Pathol; 2023 Aug; 36(8):100216. PubMed ID: 37178923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 World Health Organization classification and therapeutically relevant subsets.
    Grilley-Olson JE; Hayes DN; Moore DT; Leslie KO; Wilkerson MD; Qaqish BF; Hayward MC; Cabanski CR; Yin X; Socinski MA; Stinchcombe TE; Thorne LB; Allen TC; Banks PM; Beasley MB; Borczuk AC; Cagle PT; Christensen R; Colby TV; Deblois GG; Elmberger G; Graziano P; Hart CF; Jones KD; Maia DM; Miller CR; Nance KV; Travis WD; Funkhouser WK
    Arch Pathol Lab Med; 2013 Jan; 137(1):32-40. PubMed ID: 22583114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The artificial intelligence and machine learning in lung cancer immunotherapy.
    Gao Q; Yang L; Lu M; Jin R; Ye H; Ma T
    J Hematol Oncol; 2023 May; 16(1):55. PubMed ID: 37226190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis.
    Turkki R; Linder N; Holopainen T; Wang Y; Grote A; Lundin M; Alitalo K; Lundin J
    J Clin Pathol; 2015 Aug; 68(8):614-21. PubMed ID: 26021331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The EU-funded I
    Prelaj A; Ganzinelli M; Trovo' F; Roisman LC; Pedrocchi ALG; Kosta S; Restelli M; Ambrosini E; Broggini M; Pravettoni G; Monzani D; Nuara A; Amat R; Spathas N; Willis M; Pearson A; Dolezal J; Mazzeo L; Sangaletti S; Correa AM; Aguaron A; Watermann I; Popa C; Raimondi G; Triulzi T; Steurer S; Lo Russo G; Linardou H; Peled N; Felip E; Reck M; Garassino MC
    Clin Lung Cancer; 2023 Jun; 24(4):381-387. PubMed ID: 36959048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images.
    Sadhwani A; Chang HW; Behrooz A; Brown T; Auvigne-Flament I; Patel H; Findlater R; Velez V; Tan F; Tekiela K; Wulczyn E; Yi ES; Mermel CH; Hanks D; Chen PC; Kulig K; Batenchuk C; Steiner DF; Cimermancic P
    Sci Rep; 2021 Aug; 11(1):16605. PubMed ID: 34400666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning and Colon Cancer Interpretation: Rise of the Machine.
    McHugh K; Pai RK
    Surg Pathol Clin; 2023 Dec; 16(4):651-658. PubMed ID: 37863557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab.
    Baxi V; Lee G; Duan C; Pandya D; Cohen DN; Edwards R; Chang H; Li J; Elliott H; Pokkalla H; Glass B; Agrawal N; Lahiri A; Wang D; Khosla A; Wapinski I; Beck A; Montalto M
    Mod Pathol; 2022 Nov; 35(11):1529-1539. PubMed ID: 35840720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to Validate Predictive Immunohistochemistry Testing in Pathology? A Practical Approach Exploiting the Heterogeneity of Programmed Death Ligand-1 Present in Non-Small Cell Lung Cancer.
    Thunnissen E
    Arch Pathol Lab Med; 2019 Jan; 143(1):11-12. PubMed ID: 30307747
    [No Abstract]   [Full Text] [Related]  

  • 20. Direct identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep learning algorithms.
    Mayer C; Ofek E; Fridrich DE; Molchanov Y; Yacobi R; Gazy I; Hayun I; Zalach J; Paz-Yaacov N; Barshack I
    Mod Pathol; 2022 Dec; 35(12):1882-1887. PubMed ID: 36057739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.