These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 38692871)
1. Inhibition Mechanism of SARS-CoV-2 Infection by a Cholesterol Derivative, Nat-20(S)-yne. Murae M; Sakai S; Miyata N; Shimizu Y; Okemoto-Nakamura Y; Kishimoto T; Ogawa M; Tani H; Tanaka K; Noguchi K; Fukasawa M Biol Pharm Bull; 2024; 47(5):930-940. PubMed ID: 38692871 [TBL] [Abstract][Full Text] [Related]
2. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. Wang S; Li W; Hui H; Tiwari SK; Zhang Q; Croker BA; Rawlings S; Smith D; Carlin AF; Rana TM EMBO J; 2020 Nov; 39(21):e106057. PubMed ID: 32944968 [TBL] [Abstract][Full Text] [Related]
3. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Zhu Y; Yu D; Yan H; Chong H; He Y J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627 [TBL] [Abstract][Full Text] [Related]
4. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Yamamoto M; Kiso M; Sakai-Tagawa Y; Iwatsuki-Horimoto K; Imai M; Takeda M; Kinoshita N; Ohmagari N; Gohda J; Semba K; Matsuda Z; Kawaguchi Y; Kawaoka Y; Inoue JI Viruses; 2020 Jun; 12(6):. PubMed ID: 32532094 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of Coronavirus Entry Outlaw VK; Bovier FT; Mears MC; Cajimat MN; Zhu Y; Lin MJ; Addetia A; Lieberman NAP; Peddu V; Xie X; Shi PY; Greninger AL; Gellman SH; Bente DA; Moscona A; Porotto M mBio; 2020 Oct; 11(5):. PubMed ID: 33082259 [TBL] [Abstract][Full Text] [Related]
6. Discovery and Evaluation of Entry Inhibitors for SARS-CoV-2 and Its Emerging Variants. Acharya A; Pandey K; Thurman M; Klug E; Trivedi J; Sharma K; Lorson CL; Singh K; Byrareddy SN J Virol; 2021 Nov; 95(24):e0143721. PubMed ID: 34550770 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of ACE2-Spike Interaction by an ACE2 Binder Suppresses SARS-CoV-2 Entry. Shin YH; Jeong K; Lee J; Lee HJ; Yim J; Kim J; Kim S; Park SB Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202115695. PubMed ID: 35043545 [TBL] [Abstract][Full Text] [Related]
9. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions. Day CJ; Bailly B; Guillon P; Dirr L; Jen FE; Spillings BL; Mak J; von Itzstein M; Haselhorst T; Jennings MP mBio; 2021 Mar; 12(2):. PubMed ID: 33785634 [TBL] [Abstract][Full Text] [Related]
10. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156 [TBL] [Abstract][Full Text] [Related]
11. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. Busnadiego I; Fernbach S; Pohl MO; Karakus U; Huber M; Trkola A; Stertz S; Hale BG mBio; 2020 Sep; 11(5):. PubMed ID: 32913009 [TBL] [Abstract][Full Text] [Related]
12. Identification of SARS-CoV-2 Receptor Binding Inhibitors by In Vitro Screening of Drug Libraries. David AB; Diamant E; Dor E; Barnea A; Natan N; Levin L; Chapman S; Mimran LC; Epstein E; Zichel R; Torgeman A Molecules; 2021 May; 26(11):. PubMed ID: 34072087 [TBL] [Abstract][Full Text] [Related]
13. Peptide S4 is an entry inhibitor of SARS-CoV-2 infection. Liang Z; Wang J; Zhang H; Gao L; Xu J; Li P; Yang J; Fu X; Duan H; Liu J; Liu T; Ma W; Wu K Virology; 2024 Sep; 597():110149. PubMed ID: 38917689 [TBL] [Abstract][Full Text] [Related]
15. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122 [TBL] [Abstract][Full Text] [Related]
16. Novel Drugs Targeting the SARS-CoV-2/COVID-19 Machinery. Sternberg A; McKee DL; Naujokat C Curr Top Med Chem; 2020; 20(16):1423-1433. PubMed ID: 32416679 [TBL] [Abstract][Full Text] [Related]
17. Broad-Spectrum Host-Based Antivirals Targeting the Interferon and Lipogenesis Pathways as Potential Treatment Options for the Pandemic Coronavirus Disease 2019 (COVID-19). Yuan S; Chan CC; Chik KK; Tsang JO; Liang R; Cao J; Tang K; Cai JP; Ye ZW; Yin F; To KK; Chu H; Jin DY; Hung IF; Yuen KY; Chan JF Viruses; 2020 Jun; 12(6):. PubMed ID: 32532085 [TBL] [Abstract][Full Text] [Related]
18. Antibiotics daptomycin interacts with S protein of SARS-CoV-2 to promote cell invasion of Omicron (B1.1.529) pseudovirus. Cao X; Huang L; Tang M; Liang Y; Liu X; Hou H; Liang S Virulence; 2024 Dec; 15(1):2339703. PubMed ID: 38576396 [TBL] [Abstract][Full Text] [Related]
19. The Integral Membrane Protein ZMPSTE24 Protects Cells from SARS-CoV-2 Spike-Mediated Pseudovirus Infection and Syncytia Formation. Shilagardi K; Spear ED; Abraham R; Griffin DE; Michaelis S mBio; 2022 Oct; 13(5):e0254322. PubMed ID: 36197088 [TBL] [Abstract][Full Text] [Related]
20. Could a specific ACE2 activator drug improve the clinical outcome of SARS-CoV-2? A potential pharmacological insight. Nicolau LAD; Nolêto IRSG; Medeiros JVR Expert Rev Clin Pharmacol; 2020 Aug; 13(8):807-811. PubMed ID: 32686527 [No Abstract] [Full Text] [Related] [Next] [New Search]