These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38693126)

  • 1. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser.
    Qiao S; He Y; Sun H; Patimisco P; Sampaolo A; Spagnolo V; Ma Y
    Light Sci Appl; 2024 May; 13(1):100. PubMed ID: 38693126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser.
    Chen Y; Liang T; Qiao S; Ma Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption.
    Qiao S; Ma Y; He Y; Yu X; Zhang Z; Tittel FK
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor.
    Patimisco P; Borri S; Galli I; Mazzotti D; Giusfredi G; Akikusa N; Yamanishi M; Scamarcio G; De Natale P; Spagnolo V
    Analyst; 2015 Feb; 140(3):736-43. PubMed ID: 25465410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.
    Ma Y; Tong Y; He Y; Yu X; Tittel FK
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29300310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 mum.
    Lewicki R; Wysocki G; Kosterev AA; Tittel FK
    Opt Express; 2007 Jun; 15(12):7357-66. PubMed ID: 19547059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser.
    Ma Y; Qiao S; He Y; Li Y; Zhang Z; Yu X; Tittel FK
    Opt Express; 2019 May; 27(10):14163-14172. PubMed ID: 31163869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation.
    Spagnolo V; Patimisco P; Borri S; Scamarcio G; Bernacki BE; Kriesel J
    Opt Lett; 2012 Nov; 37(21):4461-3. PubMed ID: 23114329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quartz-enhanced photoacoustic spectroscopy: a review.
    Patimisco P; Scamarcio G; Tittel FK; Spagnolo V
    Sensors (Basel); 2014 Mar; 14(4):6165-206. PubMed ID: 24686729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy.
    Wojtas J; Gluszek A; Hudzikowski A; Tittel FK
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quartz-enhanced photoacoustic spectroscopy exploiting a fast and wideband electro-mechanical light modulator.
    Zheng H; Liu Y; Lin H; Kan R; Dong L; Zhu W; Fang J; Yu J; Tittel FK; Chen Z
    Opt Express; 2020 Sep; 28(19):27966-27973. PubMed ID: 32988078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection.
    Ma Y; He Y; Tong Y; Yu X; Tittel FK
    Opt Express; 2018 Nov; 26(24):32103-32110. PubMed ID: 30650676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mid-Infrared Quartz-Enhanced Photoacoustic Sensor for ppb-Level CO Detection in a SF
    Sun B; Zifarelli A; Wu H; Dello Russo S; Li S; Patimisco P; Dong L; Spagnolo V
    Anal Chem; 2020 Oct; 92(20):13922-13929. PubMed ID: 32962343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-sensitivity methane detection based on QEPAS and H-QEPAS technologies combined with a self-designed 8.7 kHz quartz tuning fork.
    Liang T; Qiao S; Chen Y; He Y; Ma Y
    Photoacoustics; 2024 Apr; 36():100592. PubMed ID: 38322619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv - Level sensitivity using a T-shaped custom tuning fork.
    Hayden J; Giglio M; Sampaolo A; Spagnolo V; Lendl B
    Photoacoustics; 2022 Mar; 25():100330. PubMed ID: 35198376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Micro Quartz Tuning Fork in Trace Gas Sensing by Use of Quartz-Enhanced Photoacoustic Spectroscopy.
    Lin H; Huang Z; Kan R; Zheng H; Liu Y; Liu B; Dong L; Zhu W; Tang J; Yu J; Chen Z; Tittel FK
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.
    Ma Y; Yu G; Zhang J; Yu X; Sun R; Tittel FK
    Sensors (Basel); 2015 Mar; 15(4):7596-604. PubMed ID: 25825977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustic methane detection inside a MEMS microphone.
    Strahl T; Steinebrunner J; Weber C; Wöllenstein J; Schmitt K
    Photoacoustics; 2023 Feb; 29():100428. PubMed ID: 36544534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared sensing of CO at saturated absorption conditions using intracavity quartz-enhanced photoacoustic spectroscopy.
    Hayden J; Baumgartner B; Waclawek JP; Lendl B
    Appl Phys B; 2019; 125(9):159. PubMed ID: 31975763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H
    Sampaolo A; Yu C; Wei T; Zifarelli A; Giglio M; Patimisco P; Zhu H; Zhu H; He L; Wu H; Dong L; Xu G; Spagnolo V
    Photoacoustics; 2021 Mar; 21():100219. PubMed ID: 33437615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.