BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38693332)

  • 1. Simulative investigation of the required level of geometrical individualization of the lumbar spines to predict fractures.
    Rieger LK; Junge M; Cutlan R; Peldschus S; Stemper BD
    Int J Legal Med; 2024 May; ():. PubMed ID: 38693332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-Specific Geometry of FE Lumbar Spine Models for the Replication of Fracture Locations Using Dynamic Drop Tests.
    Rieger LK; Shah A; Schick S; Draper DB; Cutlan R; Peldschus S; Stemper BD
    Ann Biomed Eng; 2024 Apr; 52(4):816-831. PubMed ID: 38374520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling and analysis of thoracolumbar spine fractures in frontal crash reconstruction.
    Ye X; Gaewsky JP; Jones DA; Miller LE; Stitzel JD; Weaver AA
    Traffic Inj Prev; 2018; 19(sup2):S32-S39. PubMed ID: 30010420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes.
    Jones DA; Gaewsky JP; Kelley ME; Weaver AA; Miller AN; Stitzel JD
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():109-15. PubMed ID: 27586111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new PMHS model for lumbar spine injuries during vertical acceleration.
    Stemper BD; Storvik SG; Yoganandan N; Baisden JL; Fijalkowski RJ; Pintar FA; Shender BS; Paskoff GR
    J Biomech Eng; 2011 Aug; 133(8):081002. PubMed ID: 21950895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of osteoligamentous lumbar spine under complex loading conditions: A step towards patient-specific modeling.
    Umale S; Yoganandan N; Kurpad SN
    J Mech Behav Biomed Mater; 2020 Oct; 110():103898. PubMed ID: 32957203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions.
    Wagnac E; Arnoux PJ; Garo A; Aubin CE
    Med Biol Eng Comput; 2012 Sep; 50(9):903-15. PubMed ID: 22566121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study.
    Choisne J; Valiadis JM; Travert C; Kolta S; Roux C; Skalli W
    J Mech Behav Biomed Mater; 2018 Nov; 87():190-196. PubMed ID: 30077078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acceleration level on lumbar spine injuries in military populations.
    Yoganandan N; Stemper BD; Baisden JL; Pintar FA; Paskoff GR; Shender BS
    Spine J; 2015 Jun; 15(6):1318-24. PubMed ID: 24374098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a finite element biomechanical whole spine model for analyzing lumbar spine loads under caudocephalad acceleration.
    Goertz AR; Yang KH; Viano DC
    Biomed Phys Eng Express; 2020 Nov; 7(1):. PubMed ID: 35092949
    [No Abstract]   [Full Text] [Related]  

  • 12. Sensitivity of lumbar spine loading to anatomical parameters.
    Putzer M; Ehrlich I; Rasmussen J; Gebbeken N; Dendorfer S
    J Biomech; 2016 Apr; 49(6):953-958. PubMed ID: 26680014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model of the human lower thorax to pelvis spinal segment: Validation and modal analysis.
    Fan W; Zhao D; Guo LX
    Biomed Mater Eng; 2021; 32(5):267-279. PubMed ID: 33998527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study.
    Naserkhaki S; Jaremko JL; El-Rich M
    J Biomech; 2016 Sep; 49(13):2909-2917. PubMed ID: 27448498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of lumbar vertebral body compressive strength of overweight and obese older adults using morphed subject-specific finite-element models to evaluate the effects of weight loss.
    Schoell SL; Beavers KM; Beavers DP; Lenchik L; Marsh AP; Rejeski WJ; Stitzel JD; Weaver AA
    Aging Clin Exp Res; 2019 Apr; 31(4):491-501. PubMed ID: 30043314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Based-Analysis for Pre and Post Lumbar Fusion of Adult Degenerative Scoliosis Patients.
    Haddas R; Xu M; Lieberman I; Yang J
    Spine Deform; 2019 Jul; 7(4):543-552. PubMed ID: 31202369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lumbar spine finite element model for healthy subjects: development and validation.
    Xu M; Yang J; Lieberman IH; Haddas R
    Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):1-15. PubMed ID: 27315668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression.
    Robinson DL; Tse KM; Franklyn M; Zhang J; Fernandez JW; Ackland DC; Lee PVS
    J Mech Behav Biomed Mater; 2021 Jun; 118():104457. PubMed ID: 33780859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of Lumbar Spine Injury in Road Barrier Collision-Finite Element Study.
    Pachocki L; Daszkiewicz K; Ɓuczkiewicz P; Witkowski W
    Front Bioeng Biotechnol; 2021; 9():760498. PubMed ID: 34790652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical tolerance of whole lumbar spines in straightened posture subjected to axial acceleration.
    Stemper BD; Chirvi S; Doan N; Baisden JL; Maiman DJ; Curry WH; Yoganandan N; Pintar FA; Paskoff G; Shender BS
    J Orthop Res; 2018 Jun; 36(6):1747-1756. PubMed ID: 29194745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.