BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38693412)

  • 1. Temporal dynamics of the multi-omic response to endurance exercise training.
    ; ;
    Nature; 2024 May; 629(8010):174-183. PubMed ID: 38693412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitochondrial multi-omic response to exercise training across rat tissues.
    Amar D; Gay NR; Jimenez-Morales D; Jean Beltran PM; Ramaker ME; Raja AN; Zhao B; Sun Y; Marwaha S; Gaul DA; Hershman SG; Ferrasse A; Xia A; Lanza I; Fernández FM; Montgomery SB; Hevener AL; Ashley EA; Walsh MJ; Sparks LM; Burant CF; Rector RS; Thyfault J; Wheeler MT; Goodpaster BH; Coen PM; Schenk S; Bodine SC; Lindholm ME;
    Cell Metab; 2024 Jun; 36(6):1411-1429.e10. PubMed ID: 38701776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An atlas of genetic scores to predict multi-omic traits.
    Xu Y; Ritchie SC; Liang Y; Timmers PRHJ; Pietzner M; Lannelongue L; Lambert SA; Tahir UA; May-Wilson S; Foguet C; Johansson Å; Surendran P; Nath AP; Persyn E; Peters JE; Oliver-Williams C; Deng S; Prins B; Luan J; Bomba L; Soranzo N; Di Angelantonio E; Pirastu N; Tai ES; van Dam RM; Parkinson H; Davenport EE; Paul DS; Yau C; Gerszten RE; Mälarstig A; Danesh J; Sim X; Langenberg C; Wilson JF; Butterworth AS; Inouye M
    Nature; 2023 Apr; 616(7955):123-131. PubMed ID: 36991119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue.
    Many GM; Sanford JA; Sagendorf TJ; Hou Z; Nigro P; Whytock KL; Amar D; Caputo T; Gay NR; Gaul DA; Hirshman MF; Jimenez-Morales D; Lindholm ME; Muehlbauer MJ; Vamvini M; Bergman BC; Fernández FM; Goodyear LJ; Hevener AL; Ortlund EA; Sparks LM; Xia A; Adkins JN; Bodine SC; Newgard CB; Schenk S;
    Nat Metab; 2024 May; 6(5):963-979. PubMed ID: 38693320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial multi-omic response to exercise training across tissues.
    Amar D; Gay NR; Jimenez-Morales D; Beltran PMJ; Ramaker ME; Raja AN; Zhao B; Sun Y; Marwaha S; Gaul D; Hershman SG; Xia A; Lanza I; Fernandez FM; Montgomery SB; Hevener AL; Ashley EA; Walsh MJ; Sparks LM; Burant CF; Rector RS; Thyfault J; Wheeler MT; Goodpaster BH; Coen PM; Schenk S; Bodine SC; Lindholm ME;
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise.
    Sanford JA; Nogiec CD; Lindholm ME; Adkins JN; Amar D; Dasari S; Drugan JK; Fernández FM; Radom-Aizik S; Schenk S; Snyder MP; Tracy RP; Vanderboom P; Trappe S; Walsh MJ;
    Cell; 2020 Jun; 181(7):1464-1474. PubMed ID: 32589957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term exercise and endurance training on skeletal muscle mitochondria damage induced by particular matter, atmospherically relevant artificial PM2.5.
    Liu W; Wang Z; Gu Y; So HS; Kook SH; Park Y; Kim SH
    Front Public Health; 2024; 12():1302175. PubMed ID: 38481847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses.
    Mach N; Ramayo-Caldas Y; Clark A; Moroldo M; Robert C; Barrey E; López JM; Le Moyec L
    BMC Genomics; 2017 Feb; 18(1):187. PubMed ID: 28212624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability.
    Hoene M; Kappler L; Kollipara L; Hu C; Irmler M; Bleher D; Hoffmann C; Beckers J; Hrabě de Angelis M; Häring HU; Birkenfeld AL; Peter A; Sickmann A; Xu G; Lehmann R; Weigert C
    Mol Metab; 2021 Dec; 54():101359. PubMed ID: 34695608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity.
    Rowlands DS; Page RA; Sukala WR; Giri M; Ghimbovschi SD; Hayat I; Cheema BS; Lys I; Leikis M; Sheard PW; Wakefield SJ; Breier B; Hathout Y; Brown K; Marathi R; Orkunoglu-Suer FE; Devaney JM; Leiken B; Many G; Krebs J; Hopkins WG; Hoffman EP
    Physiol Genomics; 2014 Oct; 46(20):747-65. PubMed ID: 25138607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of endurance training on non-alcoholic fatty liver disease in mice.
    Melo L; Bilici M; Hagar A; Klaunig JE
    Physiol Rep; 2021 Aug; 9(15):e14926. PubMed ID: 34342164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue.
    Many GM; Sanford JA; Sagendorf TJ; Hou Z; Nigro P; Whytock K; Amar D; Caputo T; Gay NR; Gaul DA; Hirshman M; Jimenez-Morales D; Lindholm ME; Muehlbauer MJ; Vamvini M; Bergman B; Fern Ndez FM; Goodyear LJ; Ortlund EA; Sparks LM; Xia A; Adkins JN; Bodine SC; Newgard CB; Schenk S;
    bioRxiv; 2023 Feb; ():. PubMed ID: 36778330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Proteome Changes in the Rat Diaphragm Induced by Endurance Exercise Training.
    Sollanek KJ; Burniston JG; Kavazis AN; Morton AB; Wiggs MP; Ahn B; Smuder AJ; Powers SK
    PLoS One; 2017; 12(1):e0171007. PubMed ID: 28135290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Acute, Short-, and Long-Term Effects of Endurance Exercise on Skeletal Muscle Transcriptome Profiles.
    Beiter T; Zügel M; Hudemann J; Schild M; Fragasso A; Burgstahler C; Krüger K; Mooren FC; Steinacker JM; Nieß AM
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients - A randomized crossover trial.
    Savikj M; Stocks B; Sato S; Caidahl K; Krook A; Deshmukh AS; Zierath JR; Wallberg-Henriksson H
    Metabolism; 2022 Oct; 135():155268. PubMed ID: 35908579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung mitochondria adaptation to endurance training in rats.
    Jarmuszkiewicz W; Dominiak K; Galganski L; Galganska H; Kicinska A; Majerczak J; Zoladz JA
    Free Radic Biol Med; 2020 Dec; 161():163-174. PubMed ID: 33075501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures.
    Nair VD; Pincas H; Smith GR; Zaslavsky E; Ge Y; Amper MAS; Vasoya M; Chikina M; Sun Y; Raja AN; Mao W; Gay NR; Esser KA; Smith KS; Zhao B; Wiel L; Singh A; Lindholm ME; Amar D; Montgomery S; Snyder MP; Walsh MJ; Sealfon SC;
    Cell Genom; 2024 Jun; 4(6):100421. PubMed ID: 38697122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise training enhances white adipose tissue metabolism in rats selectively bred for low- or high-endurance running capacity.
    Stephenson EJ; Lessard SJ; Rivas DA; Watt MJ; Yaspelkis BB; Koch LG; Britton SL; Hawley JA
    Am J Physiol Endocrinol Metab; 2013 Aug; 305(3):E429-38. PubMed ID: 23757406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cordyceps sinensis promotes exercise endurance capacity of rats by activating skeletal muscle metabolic regulators.
    Kumar R; Negi PS; Singh B; Ilavazhagan G; Bhargava K; Sethy NK
    J Ethnopharmacol; 2011 Jun; 136(1):260-6. PubMed ID: 21549819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifelong exercise training modulates cardiac mitochondrial phosphoproteome in rats.
    Ferreira R; Vitorino R; Padrão AI; Espadas G; Mancuso FM; Moreira-Gonçalves D; Castro-Sousa G; Henriques-Coelho T; Oliveira PA; Barros AS; Duarte JA; Sabidó E; Amado F
    J Proteome Res; 2014 Apr; 13(4):2045-55. PubMed ID: 24467267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.