These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38693412)

  • 61. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli.
    Kavazis AN; McClung JM; Hood DA; Powers SK
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H928-35. PubMed ID: 18083894
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Alterations in mitochondrial respiratory function in response to endurance training and endurance racing.
    Votion DM; Fraipont A; Goachet AG; Robert C; van Erck E; Amory H; Ceusters J; de la Rebière de Pouyade G; Franck T; Mouithys-Mickalad A; Niesten A; Serteyn D
    Equine Vet J Suppl; 2010 Nov; (38):268-74. PubMed ID: 21059017
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of Royal Jelly Administration on Endurance Training-Induced Mitochondrial Adaptations in Skeletal Muscle.
    Takahashi Y; Hijikata K; Seike K; Nakano S; Banjo M; Sato Y; Takahashi K; Hatta H
    Nutrients; 2018 Nov; 10(11):. PubMed ID: 30424505
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Perm1 regulates CaMKII activation and shapes skeletal muscle responses to endurance exercise training.
    Cho Y; Tachibana S; Hazen BC; Moresco JJ; Yates JR; Kok B; Saez E; Ross RS; Russell AP; Kralli A
    Mol Metab; 2019 May; 23():88-97. PubMed ID: 30862473
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Endurance training prevents negative effects of the hypoxia mimetic dimethyloxalylglycine on cardiac and skeletal muscle function.
    Favier FB; Britto FA; Ponçon B; Begue G; Chabi B; Reboul C; Meyer G; Py G
    J Appl Physiol (1985); 2016 Feb; 120(4):455-63. PubMed ID: 26679609
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-alcoholic Fatty Liver Disease.
    Chella Krishnan K; Kurt Z; Barrere-Cain R; Sabir S; Das A; Floyd R; Vergnes L; Zhao Y; Che N; Charugundla S; Qi H; Zhou Z; Meng Y; Pan C; Seldin MM; Norheim F; Hui S; Reue K; Lusis AJ; Yang X
    Cell Syst; 2018 Jan; 6(1):103-115.e7. PubMed ID: 29361464
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Moderate, but Not Excessive, Training Attenuates Autophagy Machinery in Metabolic Tissues.
    da Rocha AL; Pinto AP; Morais GP; Marafon BB; Rovina RL; Veras ASC; Teixeira GR; Pauli JR; de Moura LP; Cintra DE; Ropelle ER; Rivas DA; da Silva ASR
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182536
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hepatic PGC-1α has minor regulatory effect on the liver transcriptome and metabolome during high fat high fructose diet and exercise training.
    Rasmussen MK; Thøgersen R; Horsbøl Lindholm P; Bertram HC; Pilegaard H
    Gene; 2023 Jan; 851():147039. PubMed ID: 36368573
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metabolomics investigation of exercise-modulated changes in metabolism in rat liver after exhaustive and endurance exercises.
    Huang CC; Lin WT; Hsu FL; Tsai PW; Hou CC
    Eur J Appl Physiol; 2010 Feb; 108(3):557-66. PubMed ID: 19865828
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of Endurance Training on the Coenzyme Q Redox State in Rat Heart, Liver, and Brain at the Tissue and Mitochondrial Levels: Implications for Reactive Oxygen Species Formation and Respiratory Chain Remodeling.
    Dominiak K; Galganski L; Budzinska A; Woyda-Ploszczyca A; Zoladz JA; Jarmuszkiewicz W
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055078
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multi-omic analyses and network biology in cardiovascular disease.
    Reitz CJ; Kuzmanov U; Gramolini AO
    Proteomics; 2023 Nov; 23(21-22):e2200289. PubMed ID: 37691071
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exercise training in ovariectomized rats stimulates estrogenic-like effects on expression of genes involved in lipid accumulation and subclinical inflammation in liver.
    Pighon A; Gutkowska J; Jankowski M; Rabasa-Lhoret R; Lavoie JM
    Metabolism; 2011 May; 60(5):629-39. PubMed ID: 20674948
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Methylome and proteome integration in human skeletal muscle uncover group and individual responses to high-intensity interval training.
    Jacques M; Landen S; Romero JA; Hiam D; Schittenhelm RB; Hanchapola I; Shah AD; Voisin S; Eynon N
    FASEB J; 2023 Oct; 37(10):e23184. PubMed ID: 37698381
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification.
    Titz B; Gadaleta RM; Lo Sasso G; Elamin A; Ekroos K; Ivanov NV; Peitsch MC; Hoeng J
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30223557
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling.
    Neubauer O; Sabapathy S; Ashton KJ; Desbrow B; Peake JM; Lazarus R; Wessner B; Cameron-Smith D; Wagner KH; Haseler LJ; Bulmer AC
    J Appl Physiol (1985); 2014 Feb; 116(3):274-87. PubMed ID: 24311745
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-omic single-cell velocity models epigenome-transcriptome interactions and improves cell fate prediction.
    Li C; Virgilio MC; Collins KL; Welch JD
    Nat Biotechnol; 2023 Mar; 41(3):387-398. PubMed ID: 36229609
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance adaptations to fasted versus whey protein-fed sprint interval training.
    Aird TP; Farquharson AJ; Bermingham KM; O'Sulllivan A; Drew JE; Carson BP
    Am J Physiol Endocrinol Metab; 2021 Dec; 321(6):E802-E820. PubMed ID: 34747202
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Moderate endurance training reduced hepatic tumourigenesis associated with lower lactate overload compared to high-intensity interval training.
    Cao L; Zhang X; Ji B; Ding S; Qi Z
    Clin Exp Pharmacol Physiol; 2021 Sep; 48(9):1239-1250. PubMed ID: 34096088
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Endurance training stimulates growth and survival pathways and the redox balance in rat pancreatic islets.
    Calegari VC; Abrantes JL; Silveira LR; Paula FM; Costa JM; Rafacho A; Velloso LA; Carneiro EM; Bosqueiro JR; Boschero AC; Zoppi CC
    J Appl Physiol (1985); 2012 Mar; 112(5):711-8. PubMed ID: 22174407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.