These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38693755)

  • 1. A Simple Doublet Lens Design for Mid-Infrared Imaging.
    Nelmark CE; Serrano AL
    Appl Spectrosc; 2024 May; ():37028241250030. PubMed ID: 38693755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doublet Metalens with Simultaneous Chromatic and Monochromatic Correction in the Mid-Infrared.
    Zhou Y; Gan F; Wang R; Lan D; Shang X; Li W
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffraction-limited hyperspectral mid-infrared single-pixel microscopy.
    Ebner A; Gattinger P; Zorin I; Krainer L; Rankl C; Brandstetter M
    Sci Rep; 2023 Jan; 13(1):281. PubMed ID: 36609672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achromatic doublet intraocular lens for full aberration correction.
    Fernandez EJ; Artal P
    Biomed Opt Express; 2017 May; 8(5):2396-2404. PubMed ID: 28663881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-modal image sharpening in fourier transform infrared (FTIR) microscopy.
    Mankar R; Gajjela CC; Shahraki FF; Prasad S; Mayerich D; Reddy R
    Analyst; 2021 Aug; 146(15):4822-4834. PubMed ID: 34198314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration and spectral recovery of mid-infrared chemical images.
    Mattson EC; Nasse MJ; Rak M; Gough KM; Hirschmugl CJ
    Anal Chem; 2012 Jul; 84(14):6173-80. PubMed ID: 22732086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Fabrication of Microscale, Thin-Film Silicon Solid Immersion Lenses for Mid-Infrared Application.
    Lee GJ; Kim HM; Song YM
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32120857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of interference in laser-based mid-infrared widefield microspectroscopy.
    Schönhals A; Kröger-Lui N; Pucci A; Petrich W
    J Biophotonics; 2018 Jul; 11(7):e201800015. PubMed ID: 29573178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep image restoration for infrared photothermal heterodyne imaging.
    Zhang S; Kniazev K; Pavlovetc IM; Zhang S; Stevenson RL; Kuno M
    J Chem Phys; 2021 Dec; 155(21):214202. PubMed ID: 34879676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-aperture UV (250~400 nm) imaging spectrometer based on a solid Sagnac interferometer.
    Yang W; Liao N; He S; Cheng H; Li H
    Opt Express; 2018 Dec; 26(26):34503-34514. PubMed ID: 30650873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system.
    Bostick RL; Perram GP
    Rev Sci Instrum; 2012 Mar; 83(3):033110. PubMed ID: 22462909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially Resolved Two-Dimensional Infrared Spectroscopy via Wide-Field Microscopy.
    Ostrander JS; Serrano AL; Ghosh A; Zanni MT
    ACS Photonics; 2016 Jul; 3(7):1315-1323. PubMed ID: 27517058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-Infrared Broadband Achromatic Metalens with Wide Field of View.
    Jiang Y; Cui C; Zhao J; Hu B
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.
    Chan KL; Kazarian SG
    Appl Spectrosc; 2008 Oct; 62(10):1095-101. PubMed ID: 18926018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission Fourier Transform Infrared Spectroscopic Imaging, Mapping, and Synchrotron Scanning Microscopy with Zinc Sulfide Hemispheres on Living Mammalian Cells at Sub-Cellular Resolution.
    Chan KLA; Altharawi A; Fale P; Song CL; Kazarian SG; Cinque G; Untereiner V; Sockalingum GD
    Appl Spectrosc; 2020 May; 74(5):544-552. PubMed ID: 32031010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Fabrication and Analysis of a Hybrid-Order Monolithic Imaging Diffractive Lens on a Germanium Substrate.
    Zheng Y; Lei B; Fan B; Du J; Bian J; Wang L; Liu Y; Guan S; Liu D; Luo Q; Yang H; Zhang H; Hu C
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples.
    Davis BJ; Carney PS; Bhargava R
    Anal Chem; 2010 May; 82(9):3487-99. PubMed ID: 20392064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical morphology of Areca nut characterized directly by Fourier transform near-infrared and mid-infrared microspectroscopic imaging in reflection modes.
    Chen JB; Sun SQ; Zhou Q
    Food Chem; 2016 Dec; 212():469-75. PubMed ID: 27374557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.
    Hermann RJ; Gordon MJ
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():365-387. PubMed ID: 29596000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.