These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38693825)

  • 21. Vortex evolution patterns for flow of dilute polymer solutions in confined microfluidic cavities.
    Xue CD; Zheng ZY; Zheng GS; Zhao DW; Qin KR
    Soft Matter; 2022 May; 18(20):3867-3877. PubMed ID: 35531626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic flow switching
    Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ
    RSC Adv; 2018 Jan; 8(6):3206-3212. PubMed ID: 35541169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antisolvent fabrication of monodisperse liposomes using novel ultrasonic microreactors: Process optimization, performance comparison and intensification effect.
    Peng C; Zhu X; Zhang J; Zhao W; Jia J; Wu Z; Yu Z; Dong Z
    Ultrason Sonochem; 2024 Feb; 103():106769. PubMed ID: 38266590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing.
    Lin WS; Malmstadt N
    Eur Biophys J; 2019 Sep; 48(6):549-558. PubMed ID: 31327019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical and experimental investigation on the performance of rapid ultrasonic-assisted nucleic acid extraction based on dispersive two-phase flow.
    Zhang D; Hu Y; Gao R; Ge S; Zhang J; Zhang X; Xia N
    Anal Chim Acta; 2024 Feb; 1288():342176. PubMed ID: 38220306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-step flow synthesis of size-controlled polymer nanogels in a fluorocarbon microfluidic chip.
    Montalbo RCK; Wu MJ; Tu HL
    RSC Adv; 2024 Apr; 14(16):11258-11265. PubMed ID: 38590347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms.
    Andar AU; Hood RR; Vreeland WN; Devoe DL; Swaan PW
    Pharm Res; 2014 Feb; 31(2):401-13. PubMed ID: 24092051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles.
    Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S
    Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of a laminar-flow diffusional mixer for directed self-assembly of liposomes.
    Kennedy MJ; Ladouceur HD; Moeller T; Kirui D; Batt CA
    Biomicrofluidics; 2012; 6(4):44119. PubMed ID: 24348890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustofluidic enzyme-linked immunosorbent assay (ELISA) platform enabled by coupled acoustic streaming.
    Li X; Huffman J; Ranganathan N; He Z; Li P
    Anal Chim Acta; 2019 Nov; 1079():129-138. PubMed ID: 31387703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.
    Jahn A; Vreeland WN; Gaitan M; Locascio LE
    J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precise control of liposome size using characteristic time depends on solvent type and membrane properties.
    Choi S; Kang B; Yang E; Kim K; Kwak MK; Chang PS; Jung HS
    Sci Rep; 2023 Mar; 13(1):4728. PubMed ID: 36959258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing.
    Zhang Y; Devendran C; Lupton C; de Marco A; Neild A
    Lab Chip; 2019 Jan; 19(2):262-271. PubMed ID: 30564824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency effects on the scale and behavior of acoustic streaming.
    Dentry MB; Yeo LY; Friend JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013203. PubMed ID: 24580352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniform mixing in paper-based microfluidic systems using surface acoustic waves.
    Rezk AR; Qi A; Friend JR; Li WH; Yeo LY
    Lab Chip; 2012 Feb; 12(4):773-9. PubMed ID: 22193520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous-Flow Production of Liposomes with a Millireactor under Varying Fluidic Conditions.
    Yanar F; Mosayyebi A; Nastruzzi C; Carugo D; Zhang X
    Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33105650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.