These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38694025)
1. Thermal stability analysis of nitrile additives in LiFSI for lithium-ion batteries: An accelerating rate calorimetry study. Ali M; Park S; Raza A; Han C; Lee H; Lee H; Lee Y; Doh C Heliyon; 2024 May; 10(9):e29397. PubMed ID: 38694025 [TBL] [Abstract][Full Text] [Related]
2. Experimental Study on Thermal-Induced Runaway in High Nickel Ternary Batteries. Jia L; Wang D; Yin T; Li X; Li L; Dai Z; Zheng L ACS Omega; 2022 May; 7(17):14562-14570. PubMed ID: 35557703 [TBL] [Abstract][Full Text] [Related]
3. Study on the electrical-thermal properties of lithium-ion battery materials in the NCM622/graphite system. Li H; Wu X; Fang S; Liu M; Bi S; Zhao T; Zhang X Front Chem; 2024; 12():1403696. PubMed ID: 38680457 [TBL] [Abstract][Full Text] [Related]
4. Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt. Yang YP; Huang AC; Tang Y; Liu YC; Wu ZH; Zhou HL; Li ZP; Shu CM; Jiang JC; Xing ZX Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652664 [TBL] [Abstract][Full Text] [Related]
5. In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes. Eshetu GG; Diemant T; Grugeon S; Behm RJ; Laruelle S; Armand M; Passerini S ACS Appl Mater Interfaces; 2016 Jun; 8(25):16087-100. PubMed ID: 27299469 [TBL] [Abstract][Full Text] [Related]
6. Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. Xia L; Lee S; Jiang Y; Xia Y; Chen GZ; Liu Z ACS Omega; 2017 Dec; 2(12):8741-8750. PubMed ID: 31457404 [TBL] [Abstract][Full Text] [Related]
7. Fire-Preventing LiPF Chung GJ; Han J; Song SW ACS Appl Mater Interfaces; 2020 Sep; 12(38):42868-42879. PubMed ID: 32897056 [TBL] [Abstract][Full Text] [Related]
8. An Electrode-Crosstalk-Suppressing Smart Polymer Electrolyte for High Safety Lithium-Ion Batteries. Dong T; Xu G; Xie B; Liu T; Gong T; Sun C; Wang J; Zhang S; Zhang X; Zhang H; Huang L; Cui G Adv Mater; 2024 Jun; 36(26):e2400737. PubMed ID: 38572792 [TBL] [Abstract][Full Text] [Related]
9. Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. Li X; Zheng J; Engelhard MH; Mei D; Li Q; Jiao S; Liu N; Zhao W; Zhang JG; Xu W ACS Appl Mater Interfaces; 2018 Jan; 10(3):2469-2479. PubMed ID: 29281242 [TBL] [Abstract][Full Text] [Related]
10. Deshielding Anions Enable Solvation Chemistry Control of LiPF Yuan S; Cao S; Chen X; Wei J; Lv Z; Xia H; Li J; Zhang H; Liu L; Tian C; Chen L; Zhang W; Xing Z; Li H; Li S; Zhu Q; Feng X; Chen X Adv Mater; 2024 Apr; 36(16):e2311327. PubMed ID: 38221508 [TBL] [Abstract][Full Text] [Related]
11. Complementary Electrolyte Design for Li Metal Batteries in Electric Vehicle Applications. He M; Su CC; Xu F; Amine K; Cai M ACS Appl Mater Interfaces; 2021 Jun; 13(22):25879-25889. PubMed ID: 34028245 [TBL] [Abstract][Full Text] [Related]
13. Synergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition. Pan SH; Nachimuthu S; Hwang BJ; Brunklaus G; Jiang JC J Colloid Interface Sci; 2023 Nov; 649():804-814. PubMed ID: 37390528 [TBL] [Abstract][Full Text] [Related]
14. LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. Liu S; Zhang Q; Wang X; Xu M; Li W; Lucht BL ACS Appl Mater Interfaces; 2020 Jul; 12(30):33719-33728. PubMed ID: 32608965 [TBL] [Abstract][Full Text] [Related]
15. Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives. Han JG; Hwang E; Kim Y; Park S; Kim K; Roh DH; Gu M; Lee SH; Kwon TH; Kim Y; Choi NS; Kim BS ACS Appl Mater Interfaces; 2020 May; 12(21):24479-24487. PubMed ID: 32368903 [TBL] [Abstract][Full Text] [Related]
16. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. Wu T; Chen H; Wang Q; Sun J J Hazard Mater; 2018 Feb; 344():733-741. PubMed ID: 29154099 [TBL] [Abstract][Full Text] [Related]
17. High-Safety Lithium-Ion Batteries with Silicon-Based Anodes Enabled by Electrolyte Design. Hu K; Sang X; Chen J; Liu Z; Zhang J; Hu X Chem Asian J; 2023 Dec; 18(24):e202300820. PubMed ID: 37953663 [TBL] [Abstract][Full Text] [Related]
18. Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium-Ion Batteries. Dong T; Zhang S; Ren Z; Huang L; Xu G; Liu T; Wang S; Cui G Adv Sci (Weinh); 2024 Feb; 11(7):e2305753. PubMed ID: 38044323 [TBL] [Abstract][Full Text] [Related]
19. Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries. Zhu Z; Li X; Qi X; Ji J; Ji Y; Jiang R; Liang C; Yang D; Yang Z; Qie L; Huang Y Nanomicro Lett; 2023 Oct; 15(1):234. PubMed ID: 37874412 [TBL] [Abstract][Full Text] [Related]
20. Two-Dimensional Electrolyte Design: Broadening the Horizons of Functional Electrolytes in Lithium Batteries. Qin M; Zeng Z; Cheng S; Xie J Acc Chem Res; 2024 Apr; 57(8):1163-1173. PubMed ID: 38556989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]