BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38695077)

  • 1. Early-life exposures and long-term health: adverse gestational environments and the programming of offspring renal and vascular disease.
    Oulerich Z; Sferruzzi-Perri AN
    Am J Physiol Renal Physiol; 2024 Jul; 327(1):F21-F36. PubMed ID: 38695077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis--2012 Curt Richter Award Winner.
    Reynolds RM
    Psychoneuroendocrinology; 2013 Jan; 38(1):1-11. PubMed ID: 22998948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health.
    Argyraki M; Damdimopoulou P; Chatzimeletiou K; Grimbizis GF; Tarlatzis BC; Syrrou M; Lambropoulos A
    Hum Reprod Update; 2019 Nov; 25(6):777-801. PubMed ID: 31633761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming.
    Liu L; Wen Y; Ni Q; Chen L; Wang H
    Biol Res; 2023 Nov; 56(1):61. PubMed ID: 37978540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrauterine programming of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis mediates glomerulosclerosis in female adult offspring rats induced by prenatal ethanol exposure.
    He H; Xiong Y; Li B; Zhu Y; Chen H; Ao Y; Wang H
    Toxicol Lett; 2019 Sep; 311():17-26. PubMed ID: 31039417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations.
    Wood-Bradley RJ; Barrand S; Giot A; Armitage JA
    Nutrients; 2015 Mar; 7(3):1881-905. PubMed ID: 25774605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review: Sex specific programming: a critical role for the renal renin-angiotensin system.
    Moritz KM; Cuffe JS; Wilson LB; Dickinson H; Wlodek ME; Simmons DG; Denton KM
    Placenta; 2010 Mar; 31 Suppl():S40-6. PubMed ID: 20116093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-specific differences in the mechanisms for enhanced thromboxane A
    Graton ME; Spaans F; He R; Chatterjee P; Kirschenman R; Quon A; Phillips TJ; Case CP; Davidge ST
    Biol Sex Differ; 2024 Jun; 15(1):52. PubMed ID: 38898532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fetal programming of CVD and renal disease: animal models and mechanistic considerations.
    Langley-Evans SC
    Proc Nutr Soc; 2013 Aug; 72(3):317-25. PubMed ID: 23312451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The transgenerational mechanisms in developmental programming of metabolic diseases].
    Zambrano E
    Rev Invest Clin; 2009; 61(1):41-52. PubMed ID: 19507474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between maternal obesity and diabetes during pregnancy on offspring kidney structure and function in humans: a systematic review.
    Lee YQ; Collins CE; Gordon A; Rae KM; Pringle KG
    J Dev Orig Health Dis; 2019 Aug; 10(4):406-419. PubMed ID: 30411699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How the kidney is impacted by the perinatal maternal environment to develop hypertension.
    Paixão AD; Alexander BT
    Biol Reprod; 2013 Dec; 89(6):144. PubMed ID: 24227755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal kidney programming by maternal smoking exposure: effects on kidney structure, blood pressure and urinary sodium excretion in adult offspring.
    Block DB; Mesquita FF; de Lima IP; Boer PA; Gontijo JA
    Nephron; 2015; 129(4):283-92. PubMed ID: 25895625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perinatal iron deficiency and a high salt diet cause long-term kidney mitochondrial dysfunction and oxidative stress.
    Woodman AG; Mah R; Keddie DL; Noble RMN; Holody CD; Panahi S; Gragasin FS; Lemieux H; Bourque SL
    Cardiovasc Res; 2020 Jan; 116(1):183-192. PubMed ID: 30715197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia.
    Aljunaidy MM; Morton JS; Kirschenman R; Phillips T; Case CP; Cooke CM; Davidge ST
    Pharmacol Res; 2018 Aug; 134():332-342. PubMed ID: 29778808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function: a systematic review of animal studies.
    Lee YQ; Beckett EL; Sculley DV; Rae KM; Collins CE; Pringle KG
    Am J Physiol Renal Physiol; 2019 Jun; 316(6):F1227-F1235. PubMed ID: 30969805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk.
    Braun T; Challis JR; Newnham JP; Sloboda DM
    Endocr Rev; 2013 Dec; 34(6):885-916. PubMed ID: 23970762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of fetal programming for cardiovascular disease in adulthood.
    Leach L; Mann GE
    Microcirculation; 2011 May; 18(4):253-5. PubMed ID: 21418386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond.
    Grilo LF; Tocantins C; Diniz MS; Gomes RM; Oliveira PJ; Matafome P; Pereira SP
    Eur J Clin Invest; 2021 Oct; 51(10):e13625. PubMed ID: 34060076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placental adaptations supporting fetal growth during normal and adverse gestational environments.
    Sferruzzi-Perri AN; Lopez-Tello J; Salazar-Petres E
    Exp Physiol; 2023 Mar; 108(3):371-397. PubMed ID: 36484327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.