These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38695077)

  • 41. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms.
    Huang H; He Z; Zhu C; Liu L; Kou H; Shen L; Wang H
    Toxicol Appl Pharmacol; 2015 Oct; 288(1):84-94. PubMed ID: 26188107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fetal programming and the risk of noncommunicable disease.
    Fall CH
    Indian J Pediatr; 2013 Mar; 80 Suppl 1(0 1):S13-20. PubMed ID: 22829248
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Placenta-targeted treatment strategies: An opportunity to impact fetal development and improve offspring health later in life.
    Ganguly E; Hula N; Spaans F; Cooke CM; Davidge ST
    Pharmacol Res; 2020 Jul; 157():104836. PubMed ID: 32344051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transmitting biological effects of stress in utero: implications for mother and offspring.
    Reynolds RM; Labad J; Buss C; Ghaemmaghami P; Räikkönen K
    Psychoneuroendocrinology; 2013 Sep; 38(9):1843-9. PubMed ID: 23810315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ouabain regulates kidney metabolic profiling in rat offspring of intrauterine growth restriction induced by low-protein diet.
    Wang Q; Yue J; Zhou X; Zheng M; Cao B; Li J
    Life Sci; 2020 Oct; 259():118281. PubMed ID: 32798554
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic programming in early life in humans.
    Fall CHD; Kumaran K
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1770):20180123. PubMed ID: 30966889
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developmental effects of
    Carroll DT; Sassin AM; Aagaard KM; Gannon M
    Trends Dev Biol; 2021; 14():1-17. PubMed ID: 36589485
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sex differences in the fetal programming of hypertension.
    Grigore D; Ojeda NB; Alexander BT
    Gend Med; 2008; 5 Suppl A(Suppl A):S121-32. PubMed ID: 18395678
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of angiotensin II type 1 receptor-associated protein on prenatal development and adult hypertension after maternal dietary protein restriction during pregnancy.
    Tsukuda K; Mogi M; Iwanami J; Min LJ; Jing F; Ohshima K; Horiuchi M
    J Am Soc Hypertens; 2012; 6(5):324-30. PubMed ID: 22951100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Relationship between Maternal Nutrition during Pregnancy and Offspring Kidney Structure and Function in Humans: A Systematic Review.
    Lee YQ; Collins CE; Gordon A; Rae KM; Pringle KG
    Nutrients; 2018 Feb; 10(2):. PubMed ID: 29466283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mismatched pre- and postnatal nutrition leads to cardiovascular dysfunction and altered renal function in adulthood.
    Cleal JK; Poore KR; Boullin JP; Khan O; Chau R; Hambidge O; Torrens C; Newman JP; Poston L; Noakes DE; Hanson MA; Green LR
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9529-33. PubMed ID: 17483483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review on intrauterine programming: Consequences in rodent models of mild diabetes and mild fat overfeeding are not mild.
    Jawerbaum A; White V
    Placenta; 2017 Apr; 52():21-32. PubMed ID: 28454694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intrauterine developmental origin, programming mechanism, and prevention strategy of fetal-originated hypercholesterolemia.
    Liu K; Chen Z; Hu W; He B; Xu D; Guo Y; Wang H
    Obes Rev; 2024 Mar; 25(3):e13672. PubMed ID: 38069529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function.
    Lloyd LJ; Foster T; Rhodes P; Rhind SM; Gardner DS
    J Physiol; 2012 Jan; 590(2):377-93. PubMed ID: 22106177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fetal Growth and Intrauterine Epigenetic Programming of Obesity and Cardiometabolic Disease.
    Harary D; Akinyemi A; Charron MJ; Fuloria M
    Neoreviews; 2022 Jun; 23(6):e363-e372. PubMed ID: 35641462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine.
    Sánchez-Garrido MA; García-Galiano D; Tena-Sempere M
    Hum Reprod Update; 2022 May; 28(3):346-375. PubMed ID: 35187579
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Animal models that elucidate basic principles of the developmental origins of adult diseases.
    Nathanielsz PW
    ILAR J; 2006; 47(1):73-82. PubMed ID: 16391433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maternal Diet Influences Fetal Growth but Not Fetal Kidney Volume in an Australian Indigenous Pregnancy Cohort.
    Lee YQ; Lumbers ER; Schumacher TL; Collins CE; Rae KM; Pringle KG; Gomeroi Gaaynggal Advisory Committee
    Nutrients; 2021 Feb; 13(2):. PubMed ID: 33572217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of maternal nutrition, metabolic function and the placenta in developmental programming of renal dysfunction.
    Richter VF; Briffa JF; Moritz KM; Wlodek ME; Hryciw DH
    Clin Exp Pharmacol Physiol; 2016 Jan; 43(1):135-41. PubMed ID: 26475203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring.
    Hokke S; Arias N; Armitage JA; Puelles VG; Fong K; Geraci S; Gretz N; Bertram JF; Cullen-McEwen LA
    Diabetes Metab Res Rev; 2016 Nov; 32(8):816-826. PubMed ID: 27037899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.