These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38695353)

  • 1. Age-related differences in finger interdependence during complex hand movements.
    Klemm L; Kuehn E; Kalyani A; Schreiber S; Reichert C; Azañón E
    J Appl Physiol (1985); 2024 Jul; 137(1):181-193. PubMed ID: 38695353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single finger movements in the aging hand: changes in finger independence, muscle activation patterns and tendon displacement in older adults.
    Van Beek N; Stegeman DF; Jonkers I; de Korte CL; Veeger D; Maas H
    Exp Brain Res; 2019 May; 237(5):1141-1154. PubMed ID: 30783716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.
    Tamaru Y; Naito Y; Nishikawa T
    Psychogeriatrics; 2017 Nov; 17(6):382-388. PubMed ID: 28295921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Daily Hand Activities on Age-Related Declines of Dynamic Motor Function in Individual Fingers.
    Aoki T; Kadota K
    Motor Control; 2021 Feb; 25(2):283-294. PubMed ID: 33626510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for the quantification of key components of manual dexterity after stroke.
    Térémetz M; Colle F; Hamdoun S; Maier MA; Lindberg PG
    J Neuroeng Rehabil; 2015 Aug; 12():64. PubMed ID: 26233571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust neural decoding for dexterous control of robotic hand kinematics.
    Fan J; Vargas L; Kamper DG; Hu X
    Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finger tapping ability in healthy elderly and young adults.
    Aoki T; Fukuoka Y
    Med Sci Sports Exerc; 2010 Mar; 42(3):449-55. PubMed ID: 19952813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies.
    Häger-Ross C; Schieber MH
    J Neurosci; 2000 Nov; 20(22):8542-50. PubMed ID: 11069962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic recordings while performing a modified version of the Halstead Finger Tapping Test: Age, sex, and education effects.
    Prigatano GP; Goncalves CWP; de Oliveira SB; Denucci SM; Pereira RM; Braga LW
    J Clin Exp Neuropsychol; 2020 Feb; 42(1):42-54. PubMed ID: 31516073
    [No Abstract]   [Full Text] [Related]  

  • 10. Kinematics of point-to-point finger movements.
    Cruz EG; Kamper DG
    Exp Brain Res; 2006 Sep; 174(1):29-34. PubMed ID: 16544133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable and Asymmetric Range of Enslaving: Fingers Can Act Independently over Small Range of Flexion.
    van den Noort JC; van Beek N; van der Kraan T; Veeger DH; Stegeman DF; Veltink PH; Maas H
    PLoS One; 2016; 11(12):e0168636. PubMed ID: 27992598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the origin of finger enslaving: control with referent coordinates and effects of visual feedback.
    Abolins V; Stremoukhov A; Walter C; Latash ML
    J Neurophysiol; 2020 Dec; 124(6):1625-1636. PubMed ID: 32997555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory Control of Adjacent Finger Movements while Performing a Modified Version of the Halstead Finger Tapping Test: Effects of Age, Education and Sex.
    Prigatano GP; de Oliveira SB; Goncalves CWP; Denucci SM; Pereira RM; Braga LW
    J Int Neuropsychol Soc; 2021 Sep; 27(8):813-824. PubMed ID: 33190661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finger inter-dependence: linking the kinetic and kinematic variables.
    Kim SW; Shim JK; Zatsiorsky VM; Latash ML
    Hum Mov Sci; 2008 Jun; 27(3):408-22. PubMed ID: 18255182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements.
    Aoki T; Francis PR; Kinoshita H
    Exp Brain Res; 2003 Sep; 152(2):270-80. PubMed ID: 12898096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring 3D Hand and Finger Kinematics-A Comparison between Inertial Sensing and an Opto-Electronic Marker System.
    van den Noort JC; Kortier HG; van Beek N; Veeger DH; Veltink PH
    PLoS One; 2016; 11(11):e0164889. PubMed ID: 27812139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimanual digit training improves right-hand dexterity in older adults by reactivating declined ipsilateral motor-cortical inhibition.
    Naito E; Morita T; Hirose S; Kimura N; Okamoto H; Kamimukai C; Asada M
    Sci Rep; 2021 Nov; 11(1):22696. PubMed ID: 34811433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ipsilesional deficits during fast diadochokinetic hand movements following unilateral brain damage.
    Hermsdörfer J; Goldenberg G
    Neuropsychologia; 2002; 40(12):2100-15. PubMed ID: 12208006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expectation of movement generates contrasting changes in multifinger synergies in young and older adults.
    Tillman M; Ambike S
    Exp Brain Res; 2018 Oct; 236(10):2765-2780. PubMed ID: 30022260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finger interdependence and unintentional force drifts: Lessons from manipulations of visual feedback.
    Hirose J; Cuadra C; Walter C; Latash ML
    Hum Mov Sci; 2020 Dec; 74():102714. PubMed ID: 33166906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.