BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38695753)

  • 1. Identifying Current Collectors that Enable Light-Battery Interactions.
    Pujari A; Kim BM; Greenham NC; De Volder M
    Small Methods; 2024 May; ():e2301572. PubMed ID: 38695753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward High-Energy-Density Aqueous Lithium-Ion Batteries Using Silver Nanowires as Current Collectors.
    Kong J; Wang Y; Wu Y; Zhang L; Gong M; Lin X; Wang D
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic Glass-Fiber Fabrics: A New Type of Flexible, Super-Lightweight, and 3D Current Collector for Lithium Batteries.
    Shang J; Yu W; Wang L; Xie C; Xu H; Wang W; Huang Q; Zheng Z
    Adv Mater; 2023 Jun; 35(26):e2211748. PubMed ID: 36994791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Camphene-Assisted Fabrication of Free-Standing Lithium-Ion Battery Electrode Composites.
    Weeks JA; Lauro S; Burrow JN; Xiao H; Pender JP; Rylski AK; Daigle H; Page Z; Ellison CJ; Mullins CB
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45240-45253. PubMed ID: 36173292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. V
    Aliahmad N; Liu Y; Xie J; Agarwal M
    ACS Appl Mater Interfaces; 2018 May; 10(19):16490-16499. PubMed ID: 29688002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteries.
    Nyamaa O; Seo DH; Lee JS; Jeong HM; Huh SC; Yang JH; Dolgor E; Noh JP
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photorechargeable Lead-Free Perovskite Lithium-Ion Batteries Using Hexagonal Cs
    Tewari N; Shivarudraiah SB; Halpert JE
    Nano Lett; 2021 Jul; 21(13):5578-5585. PubMed ID: 34133191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.
    Lou F; Zhou H; Tran TD; Melandsø Buan ME; Vullum-Bruer F; Rønning M; Walmsley JC; Chen D
    ChemSusChem; 2014 May; 7(5):1335-46. PubMed ID: 24578068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intertwined CNT Assemblies as an All-Around Current Collector for Volume-Efficient Lithium-Ion Hybrid Capacitors.
    Jun JH; Paeng J; Kim J; Shin J; Choi IS; Lee JH
    ACS Appl Mater Interfaces; 2023 May; 15(21):25484-25494. PubMed ID: 37199724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt Oxide Arrays Anchored to Copper Foam as Efficient Binder-free Anode for Lithium Ion Batteries.
    Liu H; Liu R; Ma Y; Wang L; Sun C; Xu T; Liu H; Wang J
    Chemphyschem; 2023 Sep; 24(17):e202300290. PubMed ID: 37306634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries.
    Pei F; Fu A; Ye W; Peng J; Fang X; Wang MS; Zheng N
    ACS Nano; 2019 Jul; 13(7):8337-8346. PubMed ID: 31287646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries.
    Rana K; Singh J; Lee JT; Park JH; Ahn JH
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11158-66. PubMed ID: 24755116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Checkerboard-Like Sand Barriers to 3D Cu@CNF Composite Current Collectors for High-Performance Batteries.
    Luo J; Yuan W; Huang S; Zhao B; Chen Y; Liu M; Tang Y
    Adv Sci (Weinh); 2018 Jul; 5(7):1800031. PubMed ID: 30027036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling High-Performance Battery Electrodes by Surface-Structuring of Current Collectors and Crack Formation in Electrodes: A Proof-of-Concept.
    Offermann J; Gayretli E; Schmidt C; Carstensen J; Bremes HG; Würsig A; Hansen S; Abdollahifar M; Adelung R
    J Colloid Interface Sci; 2024 Jun; 664():444-453. PubMed ID: 38484513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries.
    Li X; Deng S; Banis MN; Doyle-Davis K; Zhang D; Zhang T; Yang J; Divigalpitiya R; Brandys F; Li R; Sun X
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32826-32832. PubMed ID: 31414592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic nanostructuring of copper thin films enhances adhesion to the negative electrode laminate in lithium-ion batteries.
    Zheng Z; Wang Z; Song X; Xun S; Battaglia V; Liu G
    ChemSusChem; 2014 Oct; 7(10):2853-8. PubMed ID: 25139044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
    Cui LF; Hu L; Choi JW; Cui Y
    ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Current Collector Materials for High-Performance Lithium Metal Anodes.
    Li D; Hu H; Chen B; Lai WY
    Small; 2022 Jun; 18(24):e2200010. PubMed ID: 35445540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.