These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38695893)

  • 1. Discovery of Borosin Catalytic Strategies and Function through Bioinformatic Profiling.
    Lee AR; Carter RS; Imani AS; Dommaraju SR; Hudson GA; Mitchell DA; Freeman MF
    ACS Chem Biol; 2024 May; 19(5):1116-1124. PubMed ID: 38695893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computationally guided exploration of borosin biosynthetic strategies.
    Lee AR; Carter RS; Imani AS; Dommaraju SR; Hudson GA; Mitchell DA; Freeman MF
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse Protein Architectures and α-
    Imani AS; Lee AR; Vishwanathan N; de Waal F; Freeman MF
    ACS Chem Biol; 2022 Apr; 17(4):908-917. PubMed ID: 35297605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatic Expansion of Borosins Uncovers Trans-Acting Peptide Backbone
    Cho H; Lee H; Hong K; Chung H; Song I; Lee JS; Kim S
    Biochemistry; 2022 Feb; 61(3):183-194. PubMed ID: 35061348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RiPP enzyme heterocomplex structure-guided discovery of a bacterial borosin α-
    Crone KK; Jomori T; Miller FS; Gralnick JA; Elias MH; Freeman MF
    RSC Chem Biol; 2023 Oct; 4(10):804-816. PubMed ID: 37799586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct Autocatalytic α- N-Methylating Precursors Expand the Borosin RiPP Family of Peptide Natural Products.
    Quijano MR; Zach C; Miller FS; Lee AR; Imani AS; Künzler M; Freeman MF
    J Am Chem Soc; 2019 Jun; 141(24):9637-9644. PubMed ID: 31117659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis.
    Miller FS; Crone KK; Jensen MR; Shaw S; Harcombe WR; Elias MH; Freeman MF
    Nat Commun; 2021 Sep; 12(1):5355. PubMed ID: 34504067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-mediated backbone N-methylation in ribosomally encoded peptides.
    Matabaro E; Song H; Chepkirui C; Kaspar H; Witte L; Naismith JH; Freeman MF; Künzler M
    Methods Enzymol; 2021; 656():429-458. PubMed ID: 34325794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family.
    Walker MC; Eslami SM; Hetrick KJ; Ackenhusen SE; Mitchell DA; van der Donk WA
    BMC Genomics; 2020 Jun; 21(1):387. PubMed ID: 32493223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs).
    Zhong Z; He B; Li J; Li YX
    Synth Syst Biotechnol; 2020 Sep; 5(3):155-172. PubMed ID: 32637669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides.
    Lee H; Park SH; Kim J; Lee J; Koh MS; Lee JH; Kim S
    Adv Sci (Weinh); 2024 Jan; 11(2):e2305946. PubMed ID: 37987032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome mining unveils a class of ribosomal peptides with two amino termini.
    Ren H; Dommaraju SR; Huang C; Cui H; Pan Y; Nesic M; Zhu L; Sarlah D; Mitchell DA; Zhao H
    Nat Commun; 2023 Mar; 14(1):1624. PubMed ID: 36959188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A User Guide for the Identification of New RiPP Biosynthetic Gene Clusters Using a RiPPER-Based Workflow.
    Moffat AD; Santos-Aberturas J; Chandra G; Truman AW
    Methods Mol Biol; 2021; 2296():227-247. PubMed ID: 33977452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidase Activation by a Leader Peptide-Bound RiPP Recognition Element.
    Kretsch AM; Gadgil MG; DiCaprio AJ; Barrett SE; Kille BL; Si Y; Zhu L; Mitchell DA
    Biochemistry; 2023 Feb; 62(4):956-967. PubMed ID: 36734655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatic prediction and experimental validation of RiPP recognition elements.
    Shelton KE; Mitchell DA
    Methods Enzymol; 2023; 679():191-233. PubMed ID: 36682862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems.
    Yi Y; Liang L; de Jong A; Kuipers OP
    Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.