BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38696074)

  • 1. Cholesterol and Immune Microenvironment: Path Towards Tumorigenesis.
    Saad EE; Michel R; Borahay MA
    Curr Nutr Rep; 2024 May; ():. PubMed ID: 38696074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzo[a]pyrene immunogenetics and immune archetype reprogramming of lung.
    Abd El-Fattah EE; Abdelhamid AM
    Toxicology; 2021 Nov; 463():152994. PubMed ID: 34678320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metformin modulate immune fitness in hepatocellular carcinoma: Molecular and cellular approach.
    Abd El-Fattah EE; Zakaria AY
    Int Immunopharmacol; 2022 Aug; 109():108889. PubMed ID: 35679661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-cell programming in pancreatic adenocarcinoma: a review.
    Seo YD; Pillarisetty VG
    Cancer Gene Ther; 2017 Mar; 24(3):106-113. PubMed ID: 27910859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice.
    Li X; Meng Y; Plotnikoff NP; Youkilis G; Griffin N; Wang E; Lu C; Shan F
    Cancer Biol Ther; 2015; 16(3):450-9. PubMed ID: 25701137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging role of natural products in cancer immunotherapy.
    Dong S; Guo X; Han F; He Z; Wang Y
    Acta Pharm Sin B; 2022 Mar; 12(3):1163-1185. PubMed ID: 35530162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qntrolling the LncRNA HULC-Tregs-PD-1 axis inhibits immune escape in the tumor microenvironment.
    Wang X; Mo X; Yang Z; Zhao C
    Heliyon; 2024 Apr; 10(7):e28386. PubMed ID: 38560250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoted Generation of T Helper 1-Like Regulatory T Cells After Transient Middle Cerebral Artery Occlusion in Type-2 Diabetic Mice.
    Jian L; Hu Y; Gao M; Shu L
    Immunol Invest; 2023 Nov; 52(4):482-498. PubMed ID: 37076315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-33 in the tumor microenvironment is associated with the accumulation of FoxP3-positive regulatory T cells in human esophageal carcinomas.
    Cui G; Li Z; Ren J; Yuan A
    Virchows Arch; 2019 Nov; 475(5):579-586. PubMed ID: 31062086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of LAP
    Zhong W; Jiang ZY; Zhang L; Huang JH; Wang SJ; Liao C; Cai B; Chen LS; Zhang S; Guo Y; Cao YF; Gao F
    World J Gastroenterol; 2017 Jan; 23(3):455-463. PubMed ID: 28210081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-23 receptor defines T helper 1-like regulatory T cells in oral squamous cell carcinoma.
    Li W; An N; Wang M; Liu X; Mei Z
    Immun Inflamm Dis; 2022 Dec; 10(12):e746. PubMed ID: 36444617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of regulatory T cells to cancer: A review.
    Najafi M; Farhood B; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):7983-7993. PubMed ID: 30317612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors.
    Devaud C; Westwood JA; Teng MW; John LB; Yong CS; Duong CP; Smyth MJ; Darcy PK; Kershaw MH
    Oncoimmunology; 2014 Nov; 3(11):e963395. PubMed ID: 25941590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis.
    Saad EE; Michel R; Borahay MA
    Cytokine Growth Factor Rev; 2024 Feb; 75():93-100. PubMed ID: 37839993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer.
    Pu N; Zhao G; Yin H; Li JA; Nuerxiati A; Wang D; Xu X; Kuang T; Jin D; Lou W; Wu W
    J Transl Med; 2018 Oct; 16(1):294. PubMed ID: 30359281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTLA-4 Synergizes With PD1/PD-L1 in the Inhibitory Tumor Microenvironment of Intrahepatic Cholangiocarcinoma.
    Guo XJ; Lu JC; Zeng HY; Zhou R; Sun QM; Yang GH; Pei YZ; Meng XL; Shen YH; Zhang PF; Cai JB; Huang PX; Ke AW; Shi YH; Zhou J; Fan J; Chen Y; Yang LX; Shi GM; Huang XY
    Front Immunol; 2021; 12():705378. PubMed ID: 34526987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting CD166
    El-Ashmawy NE; Salem ML; Abd El-Fattah EE; Khedr EG
    Toxicol Appl Pharmacol; 2021 Oct; 429():115699. PubMed ID: 34437932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune Checkpoints in Circulating and Tumor-Infiltrating CD4
    Toor SM; Murshed K; Al-Dhaheri M; Khawar M; Abu Nada M; Elkord E
    Front Immunol; 2019; 10():2936. PubMed ID: 31921188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy.
    da Cunha A; Antoniazi Michelin M; Cândido Murta EF
    Immunol Lett; 2016 Sep; 177():25-37. PubMed ID: 27423825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tumor Immune Microenvironment in Clear Cell Renal Cell Carcinoma.
    Monjaras-Avila CU; Lorenzo-Leal AC; Luque-Badillo AC; D'Costa N; Chavez-Muñoz C; Bach H
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.