These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38696095)

  • 1. Mechanisms for the Enhancement of Caproic Acid and H
    Xie G; Huang D; Duan X; Liu J; Yuan S; Tao Y
    Appl Biochem Biotechnol; 2024 May; ():. PubMed ID: 38696095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of high-concentration
    Zhu X; Zhou Y; Wang Y; Wu T; Li X; Li D; Tao Y
    Biotechnol Biofuels; 2017; 10():102. PubMed ID: 28439295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium.
    Wang H; Li X; Wang Y; Tao Y; Lu S; Zhu X; Li D
    Microb Cell Fact; 2018 Jun; 17(1):99. PubMed ID: 29940966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Transcriptomic Analysis of
    Lu S; Jin H; Wang Y; Tao Y
    J Microbiol Biotechnol; 2021 Nov; 31(11):1533-1544. PubMed ID: 34489376
    [No Abstract]   [Full Text] [Related]  

  • 5. Complete genome sequence of Ruminococcaceae bacterium CPB6: A newly isolated culture for efficient n-caproic acid production from lactate.
    Tao Y; Zhu X; Wang H; Wang Y; Li X; Jin H; Rui J
    J Biotechnol; 2017 Oct; 259():91-94. PubMed ID: 28774671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of a L-lactate dehydrogenase gene from Ruminococcaceae bacterium CPB6.
    Yang Q; Wei C; Guo S; Liu J; Tao Y
    World J Microbiol Biotechnol; 2020 Nov; 36(12):182. PubMed ID: 33170386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Butyryl/Caproyl-CoA:Acetate CoA-transferase: cloning, expression and characterization of the key enzyme involved in medium-chain fatty acid biosynthesis.
    Yang Q; Guo S; Lu Q; Tao Y; Zheng D; Zhou Q; Liu J
    Biosci Rep; 2021 Aug; 41(8):. PubMed ID: 34338280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H
    Woodard TL; Ueki T; Lovley DR
    mBio; 2023 Apr; 14(2):e0007623. PubMed ID: 36786581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.
    Cha M; Chung D; Westpheling J
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1823-1831. PubMed ID: 26536872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary study on the feasibility of industrialization for n-caproic acid recovery from food wastewater: From lab to pilot.
    Zhu X; Huang H; He Y; Wang X; Jia J; Feng X; Li D; Li H
    Bioresour Technol; 2022 Dec; 366():128154. PubMed ID: 36270389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472
    [No Abstract]   [Full Text] [Related]  

  • 12. Valorization of whey-based side streams for microbial biomass, molecular hydrogen, and hydrogenase production.
    Poladyan A; Trchounian K; Paloyan A; Minasyan E; Aghekyan H; Iskandaryan M; Khoyetsyan L; Aghayan S; Tsaturyan A; Antranikian G
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4683-4696. PubMed ID: 37289241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli.
    Kim JY; Jo BH; Cha HJ
    Microb Cell Fact; 2010 Jul; 9():54. PubMed ID: 20604966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009.
    Calusinska M; Hamilton C; Monsieurs P; Mathy G; Leys N; Franck F; Joris B; Thonart P; Hiligsmann S; Wilmotte A
    Biotechnol Biofuels; 2015; 8():27. PubMed ID: 25722742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of iscR stimulates recombinant clostridial Fe-Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3).
    Akhtar MK; Jones PR
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):853-62. PubMed ID: 18320190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of biohydrogen production by protonophores in novel green microalgae Parachlorella kessleri.
    Manoyan J; Gabrielyan L; Kozel N; Trchounian A
    J Photochem Photobiol B; 2019 Oct; 199():111597. PubMed ID: 31450130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO-dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius.
    Mohr T; Aliyu H; Küchlin R; Polliack S; Zwick M; Neumann A; Cowan D; de Maayer P
    Microb Cell Fact; 2018 Jul; 17(1):108. PubMed ID: 29986719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum.
    Zhang Y; Xiao L; Wang S; Liu F
    Bioresour Technol; 2019 Jul; 283():308-315. PubMed ID: 30921584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of calcium magnesium ferrite nanoparticles for boosting biohydrogen production.
    Wang R; Zhang H; Zhang J; Zhou C; Zhang X; Yan X; Yu F; Zhang J
    Bioresour Technol; 2024 Mar; 395():130410. PubMed ID: 38307484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe
    Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.