These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38696244)

  • 1. Coprecipitation of Fe/Cr Hydroxides at Organic-Water Interfaces: Functional Group Richness and (De)protonation Control Amounts and Compositions of Coprecipitates.
    Hu Y; Jiang X; Zhang S; Cai D; Zhou Z; Liu C; Zuo X; Lee SS
    Environ Sci Technol; 2024 May; 58(19):8501-8509. PubMed ID: 38696244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coprecipitation of Fe/Cr Hydroxides with Organics: Roles of Organic Properties in Composition and Stability of the Coprecipitates.
    Deng N; Li Z; Zuo X; Chen J; Shakiba S; Louie SM; Rixey WG; Hu Y
    Environ Sci Technol; 2021 Apr; 55(8):4638-4647. PubMed ID: 33760589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous Coprecipitation of Nanocrystals with Metals on Substrates.
    Hu Y; Zhang S; Zhou Z; Cao Z
    Acc Chem Res; 2024 May; 57(9):1254-1263. PubMed ID: 38488208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (Fe, Cr)(OH)
    Zhang S; Cheng L; Zuo X; Cai D; Tong K; Hu Y; Ni J
    Environ Sci Technol; 2023 May; 57(19):7516-7525. PubMed ID: 37130379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insight of weak magnetic field trigger transformation of amorphous Fe(III)-(oxy)hydroxide for enhanced ferrate (VI) towards selective removal of natural organic matter.
    Yang G; Cheng Z; Bao H; Zhang L; Zhang H; Jia H; Wang J
    Chemosphere; 2022 Sep; 303(Pt 2):134967. PubMed ID: 35623432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insights into the Role of Natural Organic Matter in Fe-Cr Coprecipitation: Importance of Molecular Selectivity.
    Zhu S; Luo W; Mo Y; Ding K; Zhang M; Jin C; Wang S; Chao Y; Tang YT; Qiu R
    Environ Sci Technol; 2023 Sep; 57(37):13991-14001. PubMed ID: 37523249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II).
    Zhao C; Hu L; Zhang C; Wang S; Wang X; Huo Z
    Environ Pollut; 2021 Oct; 287():117303. PubMed ID: 34010759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures.
    Ahn H; Jo HY; Lee YJ; Kim GY
    J Environ Radioact; 2016 Jul; 158-159():30-7. PubMed ID: 27060782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Insights into Roles of Dissolved Organic Matter in Cr(III) Immobilization by Coprecipitation with Fe(III) Probed by STXM-Ptychography and XANES Spectroscopy.
    Xia X; Wang J; Hu Y; Liu J; Darma AI; Jin L; Han H; He C; Yang J
    Environ Sci Technol; 2022 Feb; 56(4):2432-2442. PubMed ID: 35109654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in-situ formed iron (oxy)hydroxides.
    Yang Z; Ma J; Liu F; Zhang H; Ma X; He D
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):864-872. PubMed ID: 34785461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crucial role of humic substance type in Cr(VI) reduction by humic substance-Fe(III) coprecipitates but not in adsorption.
    Wang H; Gong X; Zhang Y; Liu F; Zhang J; Yuan Y; Samuel B; Tan W; Xi B; Chen H
    Environ Pollut; 2024 Dec; 363(Pt 1):125057. PubMed ID: 39357557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cr(VI) Adsorption on Engineered Iron Oxide Nanoparticles: Exploring Complexation Processes and Water Chemistry.
    Pan Z; Zhu X; Satpathy A; Li W; Fortner JD; Giammar DE
    Environ Sci Technol; 2019 Oct; 53(20):11913-11921. PubMed ID: 31556295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate Removal in Relation to Structural Development of Humic Acid-Iron Coprecipitates.
    Chen KY; Hsu LC; Chan YT; Cho YL; Tsao FY; Tzou YM; Hsieh YC; Liu YT
    Sci Rep; 2018 Jul; 8(1):10363. PubMed ID: 29985471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide.
    He X; Zhong P; Qiu X
    Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation.
    Ou JH; Sheu YT; Tsang DCW; Sun YJ; Kao CM
    Chemosphere; 2020 Oct; 256():127158. PubMed ID: 32470741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergism of Fe and Al salts for the coagulation of dissolved organic matter: Structural developments of Fe/Al-organic matter associations.
    Chen KY; Liu YT; Hung JT; Hsieh YC; Tzou YM
    Chemosphere; 2023 Mar; 316():137737. PubMed ID: 36608877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A XAFS study of plain and composite iron(III) and chromium(III) hydroxides.
    Papassiopi N; Pinakidou F; Katsikini M; Antipas GS; Christou C; Xenidis A; Paloura EC
    Chemosphere; 2014 Sep; 111():169-76. PubMed ID: 24997915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents.
    Janos P; Hůla V; Bradnová P; Pilarová V; Sedlbauer J
    Chemosphere; 2009 May; 75(6):732-8. PubMed ID: 19215962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.