BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38696274)

  • 1. Influence of the Dielectric Constant on the Ionic Current Rectification of Bipolar Nanopores.
    Córdoba A; Montes de Oca JM; Darling SB; de Pablo JJ
    ACS Nano; 2024 May; 18(19):12569-12579. PubMed ID: 38696274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation.
    Montes de Oca JM; Dhanasekaran J; Córdoba A; Darling SB; de Pablo JJ
    ACS Nano; 2022 Mar; 16(3):3768-3775. PubMed ID: 35230815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Rectification and Ionic Selectivity of α-Hemolysin: Coarse-Grained Molecular Dynamics Simulations.
    Dessaux D; Mathé J; Ramirez R; Basdevant N
    J Phys Chem B; 2022 Jun; ():. PubMed ID: 35657610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.
    Momotenko D; Girault HH
    J Am Chem Soc; 2011 Sep; 133(37):14496-9. PubMed ID: 21851111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor.
    Guenot J; Kollman PA
    Protein Sci; 1992 Sep; 1(9):1185-205. PubMed ID: 1304396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-dependent dielectric constant at the calcite/electrolyte interface: Implication for surface complexation modeling.
    Zarzycki P
    J Colloid Interface Sci; 2023 Sep; 645():752-764. PubMed ID: 37172485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolytes in a nanometer slab-confinement: ion-specific structure and solvation forces.
    Kalcher I; Schulz JC; Dzubiella J
    J Chem Phys; 2010 Oct; 133(16):164511. PubMed ID: 21033809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity coefficients of aqueous electrolytes from implicit-water molecular dynamics simulations.
    Saravi SH; Panagiotopoulos AZ
    J Chem Phys; 2021 Nov; 155(18):184501. PubMed ID: 34773944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores.
    Stachiewicz A; Molski A
    J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aprotic Solvent Accumulation Amplifies Ion Current Rectification in Conical Nanopores.
    Farrell EB; Duleba D; Johnson RP
    J Phys Chem B; 2022 Aug; 126(30):5689-5694. PubMed ID: 35867912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores.
    Lai SK; Kau CY; Tang YW; Chan KY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051203. PubMed ID: 15244814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores.
    Qiu Y; Siwy ZS; Wanunu M
    Anal Chem; 2019 Jan; 91(1):996-1004. PubMed ID: 30516369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena.
    Liu W; Sun Y; Yan H; Ren Y; Song C; Wu Q
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.
    Olson MA
    Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between Born solvation, dielectric exclusion, and Coulomb attraction in spherical nanopores.
    Hennequin T; Manghi M; Palmeri J
    Phys Rev E; 2021 Oct; 104(4-1):044601. PubMed ID: 34781526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implicit solvent simulations of DNA and DNA-protein complexes: agreement with explicit solvent vs experiment.
    Chocholousová J; Feig M
    J Phys Chem B; 2006 Aug; 110(34):17240-51. PubMed ID: 16928023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes.
    Tagliazucchi M; Rabin Y; Szleifer I
    ACS Nano; 2013 Oct; 7(10):9085-97. PubMed ID: 24047263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of implicit and explicit solvent model systems for the molecular dynamics simulation of bacteriophage T4 lysozyme.
    Arnold GE; Ornstein RL
    Proteins; 1994 Jan; 18(1):19-33. PubMed ID: 8146120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric Properties of Water in Charged Nanopores.
    Underwood TR; Bourg IC
    J Phys Chem B; 2022 Apr; 126(14):2688-2698. PubMed ID: 35362980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.