These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38696275)

  • 1. Aquivion-Based Spray Freeze-Dried Composite Materials for the Cascade Production of γ-Valerolactone.
    Allegri A; Saotta A; Liuzzi F; Gianotti E; Paul G; Cattaneo AS; Oldani C; Brigliadori A; Zanoni I; Fornasari G; Dimitratos N; Albonetti S
    ChemSusChem; 2024 May; ():e202301683. PubMed ID: 38696275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascade Upgrading of Biomass-Derived Furfural to γ-Valerolactone Over Zr/Hf-Based Catalysts.
    Sun W; Li H; Wang X; Liu A
    Front Chem; 2022; 10():863674. PubMed ID: 35321478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-Assisted One Pot Cascade Conversion of Furfural to γ-Valerolactone over Sc(OTf)
    Li F; Yang R; Tian Z; Du Z; Dai J; Wang X; Li N; Zhang J
    Chemistry; 2023 Sep; 29(52):e202300950. PubMed ID: 37392150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascade reaction engineering on zirconia-supported mesoporous MFI zeolites with tunable Lewis-Brønsted acid sites: a case of the one-pot conversion of furfural to γ-valerolactone.
    Kim KD; Kim J; Teoh WY; Kim JC; Huang J; Ryoo R
    RSC Adv; 2020 Sep; 10(58):35318-35328. PubMed ID: 35515682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step upgrading of bio-based furfural to γ-valerolactone
    Li M; Liu Y; Lin X; Tan J; Yang S; Li H
    RSC Adv; 2021 Oct; 11(56):35415-35424. PubMed ID: 35493184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances on bifunctional catalysts for one-pot conversion of furfural to γ-valerolactone.
    Wang J; Xiang Z; Huang Z; Xu Q; Yin D
    Front Chem; 2022; 10():959572. PubMed ID: 36017159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst.
    Popova M; Djinović P; Ristić A; Lazarova H; Dražić G; Pintar A; Balu AM; Novak Tušar N
    Front Chem; 2018; 6():285. PubMed ID: 30065923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites.
    Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C
    Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone.
    Jayakumari MT; Krishnan CK
    RSC Adv; 2024 Jul; 14(30):21453-21463. PubMed ID: 38979450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions.
    Yang T; Zhou YH; Zhu SZ; Pan H; Huang YB
    ChemSusChem; 2017 Oct; 10(20):4066-4079. PubMed ID: 28856818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous Catalyzed Direct Conversion of Furfural to Gamma-Valerolactone.
    Koranchalil S; Lobo Justo Pinheiro D; Padilla R; Nielsen M
    ChemSusChem; 2024 Jun; 17(11):e202301608. PubMed ID: 38415323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts.
    Moreno-Marrodan C; Barbaro P; Caporali S; Bossola F
    ChemSusChem; 2018 Oct; 11(20):3649-3660. PubMed ID: 30106509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alloying nickel and cobalt with iron on ZSM-5 for tuning competitive hydrogenation reactions for selective one-pot conversion of furfural to gamma-valerolactone.
    Shao Y; Guo M; Fan M; Sun K; Gao G; Li C; Bkangmo Kontchouo FM; Zhang L; Zhang S; Hu X
    Dalton Trans; 2022 Nov; 51(45):17441-17453. PubMed ID: 36326162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts.
    Liu Y; Gao L; Chang G; Zhou W
    Bioresour Technol; 2024 Jun; 406():131001. PubMed ID: 38897549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valeric Biofuel Production from γ-Valerolactone over Bifunctional Catalysts with Moderate Noble-Metal Loading.
    Martínez Figueredo KG; Virgilio EM; Segobia DJ; Bertero NM
    Chempluschem; 2021 Jul; 86(9):1342-1346. PubMed ID: 34405959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter Effect of Pt on Zr Catalysts to Increase the Conversion of Furfural to γ-Valerolactone Using Batch and Continuous Flow Reactors: Influence of the Way of the Incorporation of the Pt Sites.
    García A; Saotta A; Miguel PJ; Sánchez-Tovar R; Fornasari G; Allegri A; Torres-Olea B; Cecilia JA; Albonetti S; Dimitratos N; Solsona B
    Energy Fuels; 2024 Jun; 38(11):9849-9861. PubMed ID: 38863684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability.
    Yu Z; Lu X; Bai H; Xiong J; Feng W; Ji N
    Chem Asian J; 2020 Apr; 15(8):1182-1201. PubMed ID: 32012471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production.
    Jiang CX; Di JH; Su C; Yang SY; Ma CL; He YC
    Bioresour Technol; 2018 Nov; 268():315-322. PubMed ID: 30092485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Falling Leaves Return to Their Roots: A Review on the Preparation of γ-Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose.
    Xu R; Liu K; Du H; Liu H; Cao X; Zhao X; Qu G; Li X; Li B; Si C
    ChemSusChem; 2020 Dec; 13(24):6461-6476. PubMed ID: 32961026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.