These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38696295)

  • 21. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.
    Morrow E; Zidaru T; Ross F; Mason C; Patel KD; Ream M; Stockley R
    Front Psychol; 2022; 13():971044. PubMed ID: 36733854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey.
    Ni J; Wu L; Fan X; Yang SX
    Comput Intell Neurosci; 2016; 2016():3810903. PubMed ID: 26819582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving transparency of powered exoskeletons using force/torque sensors on the supporting cuffs.
    Zanotto D; Lenzi T; Stegall P; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650404. PubMed ID: 24187223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation: a meta-analysis and systematic review.
    Qu H; Zeng F; Tang Y; Shi B; Wang Z; Chen X; Wang J
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):30-41. PubMed ID: 35450498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An intelligent end-effector for a rehabilitation robot.
    Gosine RG; Harwin WS; Furby LJ; Jackson RD
    J Med Eng Technol; 1989; 13(1-2):37-43. PubMed ID: 2733012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A perspective on intelligent devices and environments in medical rehabilitation.
    Cooper RA; Dicianno BE; Brewer B; LoPresti E; Ding D; Simpson R; Grindle G; Wang H
    Med Eng Phys; 2008 Dec; 30(10):1387-98. PubMed ID: 18993108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PSO Algorithm-Based Design of Intelligent Education Personalization System.
    Li P; Yang J
    Comput Intell Neurosci; 2022; 2022():9617048. PubMed ID: 35855797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vision-Based Intelligent Perceiving and Planning System of a 7-DoF Collaborative Robot.
    Xu L; Li G; Song P; Shao W
    Comput Intell Neurosci; 2021; 2021():5810371. PubMed ID: 34630547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of visual error augmentation when integrated with assist-as-needed training method in robot-assisted rehabilitation.
    Wang F; Barkana DE; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):571-9. PubMed ID: 20639181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower limb rehabilitation robotics: The current understanding and technology.
    Bhardwaj S; Khan AA; Muzammil M
    Work; 2021; 69(3):775-793. PubMed ID: 34180443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensors and Artificial Intelligence Methods and Algorithms for Human-Computer Intelligent Interaction: A Systematic Mapping Study.
    Šumak B; Brdnik S; Pušnik M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of artificial intelligence in active assisted living for aging population in real-world setting with commercial devices - A scoping review.
    Wang K; Ghafurian M; Chumachenko D; Cao S; Butt ZA; Salim S; Abhari S; Morita PP
    Comput Biol Med; 2024 May; 173():108340. PubMed ID: 38555702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.
    Ko S; Nakazawa A; Kurose Y; Harada K; Mitsuishi M; Sora S; Shono N; Nakatomi H; Saito N; Morita A
    Neurosurg Focus; 2017 May; 42(5):E5. PubMed ID: 28463616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges.
    Nizamis K; Athanasiou A; Almpani S; Dimitrousis C; Astaras A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model learning for robot control: a survey.
    Nguyen-Tuong D; Peters J
    Cogn Process; 2011 Nov; 12(4):319-40. PubMed ID: 21487784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.