These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 38696332)
1. A Preclinical Trial Protocol Using an Ovine Model to Assess Scaffold Implant Biomaterials for Repair of Critical-Sized Mandibular Defects. Xin H; Ferguson BM; Wan B; Al Maruf DSA; Lewin WT; Cheng K; Kruse HV; Leinkram D; Parthasarathi K; Wise IK; Froggatt C; Crook JM; McKenzie DR; Li Q; Clark JR ACS Biomater Sci Eng; 2024 May; 10(5):2863-2879. PubMed ID: 38696332 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensionally printed polyetherketoneketone scaffolds with mesenchymal stem cells for the reconstruction of critical-sized mandibular defects. Roskies MG; Fang D; Abdallah MN; Charbonneau AM; Cohen N; Jordan JO; Hier MP; Mlynarek A; Tamimi F; Tran SD Laryngoscope; 2017 Nov; 127(11):E392-E398. PubMed ID: 28776691 [TBL] [Abstract][Full Text] [Related]
3. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415 [TBL] [Abstract][Full Text] [Related]
4. Lattice design and 3D-printing of PEEK with Ca Oladapo BI; Ismail SO; Bowoto OK; Omigbodun FT; Olawumi MA; Muhammad MA Int J Biol Macromol; 2020 Dec; 165(Pt A):50-62. PubMed ID: 32979443 [TBL] [Abstract][Full Text] [Related]
5. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
6. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
7. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549 [TBL] [Abstract][Full Text] [Related]
8. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects. Fernández MP; Witte F; Tozzi G J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530 [TBL] [Abstract][Full Text] [Related]
10. Study on mechanical properties of dual-channel cryogenic 3D printing scaffold for mandibular defect repair. Gao L; Sun M; Liu J; Meng L; Liu H; Li R Med Biol Eng Comput; 2024 Aug; 62(8):2435-2448. PubMed ID: 38622437 [TBL] [Abstract][Full Text] [Related]
11. Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep. Schouman T; Schmitt M; Adam C; Dubois G; Rouch P J Mech Behav Biomed Mater; 2016 Jun; 59():484-496. PubMed ID: 26999620 [TBL] [Abstract][Full Text] [Related]
12. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering. Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model. Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102 [TBL] [Abstract][Full Text] [Related]
14. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. Li L; Shi J; Zhang K; Yang L; Yu F; Zhu L; Liang H; Wang X; Jiang Q J Orthop Translat; 2019 Oct; 19():94-105. PubMed ID: 31844617 [TBL] [Abstract][Full Text] [Related]
15. Regeneration of Critical-Sized Mandibular Defects Using 3D-Printed Composite Scaffolds: A Quantitative Evaluation of New Bone Formation in In Vivo Studies. Dalfino S; Savadori P; Piazzoni M; Connelly ST; Giannì AB; Del Fabbro M; Tartaglia GM; Moroni L Adv Healthc Mater; 2023 Aug; 12(21):e2300128. PubMed ID: 37186456 [TBL] [Abstract][Full Text] [Related]
16. Form and functional repair of long bone using 3D-printed bioactive scaffolds. Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
19. Bioactive coatings on 3D printed scaffolds for bone regeneration: Use of Laponite® to deliver BMP-2 in an ovine femoral condyle defect model. Marshall KM; McLaren JS; Wojciechowski JP; Callens SJP; Echalier C; Kanczler JM; Rose FRAJ; Stevens MM; Dawson JI; Oreffo ROC Biomater Adv; 2024 Nov; 164():213959. PubMed ID: 39083876 [TBL] [Abstract][Full Text] [Related]
20. Mechanobiologically optimization of a 3D titanium-mesh implant for mandibular large defect: A simulated study. Gao H; Li X; Wang C; Ji P; Wang C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109934. PubMed ID: 31500061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]