These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38696339)
1. Commercial Nafion Membranes for Harvesting Osmotic Energy from Proton Gradients that Exceed the Commercial Goal of 5.0 W/m Hou Q; Dai Y; Zhang X; Xia F ACS Nano; 2024 May; 18(19):12580-12587. PubMed ID: 38696339 [TBL] [Abstract][Full Text] [Related]
2. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion. Zeng H; Yao C; Wu C; Wang D; Ma W; Wang J Small; 2024 Jun; 20(26):e2310811. PubMed ID: 38299466 [TBL] [Abstract][Full Text] [Related]
3. Thermo-Osmotic Energy Conversion Enabled by Covalent-Organic-Framework Membranes with Record Output Power Density. Zuo X; Zhu C; Xian W; Meng QW; Guo Q; Zhu X; Wang S; Wang Y; Ma S; Sun Q Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202116910. PubMed ID: 35179288 [TBL] [Abstract][Full Text] [Related]
4. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes. Avci AH; Messana DA; Santoro S; Tufa RA; Curcio E; Di Profio G; Fontananova E Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731421 [TBL] [Abstract][Full Text] [Related]
5. Tunable Surface Charge of Layered Double Hydroxide Membranes Enabling Osmotic Energy Harvesting from Anion Transport. Qin S; Yang G; Wang S; Ma Y; Wang Z; Wang L; Liu D; Lei W Small; 2024 Aug; 20(34):e2400850. PubMed ID: 38616735 [TBL] [Abstract][Full Text] [Related]
6. Optimizing Nanofluidic Energy Harvesting in Synthetic Clay-based Membranes by Annealing Treatment. Zavala-Galindo Y; Yang G; Zang H; Lei W; Liu D Adv Sci (Weinh); 2024 Aug; 11(31):e2400233. PubMed ID: 38885420 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting. Jia X; Zhang M; Zhang Y; Fu Y; Sheng N; Chen S; Wang H; Du Y Nano Lett; 2024 Feb; 24(7):2218-2225. PubMed ID: 38277614 [TBL] [Abstract][Full Text] [Related]
8. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting. Ma X; Neek-Amal M; Sun C ACS Nano; 2024 May; 18(20):12610-12638. PubMed ID: 38733357 [TBL] [Abstract][Full Text] [Related]
9. Meta-Aerogel Ion Motor for Nanofluid Osmotic Energy Harvesting. Zhang F; Yu J; Si Y; Ding B Adv Mater; 2023 Sep; 35(38):e2302511. PubMed ID: 37295070 [TBL] [Abstract][Full Text] [Related]
10. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting. Lin C; Hao J; Zhao J; Hou Y; Ma S; Sui X J Colloid Interface Sci; 2024 Jan; 654(Pt B):840-847. PubMed ID: 37898068 [TBL] [Abstract][Full Text] [Related]
11. Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting. Jung J; Choi S; Kang I; Choi K Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470806 [TBL] [Abstract][Full Text] [Related]
12. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting. Shi J; Sun X; Zhang Y; Niu S; Wang Z; Wu Z; An M; Chen L; Li J Carbohydr Polym; 2024 Mar; 327():121656. PubMed ID: 38171677 [TBL] [Abstract][Full Text] [Related]
13. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152 [TBL] [Abstract][Full Text] [Related]
15. Neutralization Reaction Assisted Chemical-Potential-Driven Ion Transport through Layered Titanium Carbides Membrane for Energy Harvesting. Liu P; Sun Y; Zhu C; Niu B; Huang X; Kong XY; Jiang L; Wen L Nano Lett; 2020 May; 20(5):3593-3601. PubMed ID: 32242672 [TBL] [Abstract][Full Text] [Related]
16. Two-Dimensional Ti Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989 [TBL] [Abstract][Full Text] [Related]
17. Robust Cellulose Nanocrystal-Based Self-Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting. Zhang X; Li M; Zhang F; Li Q; Xiao J; Lin Q; Qing G Small; 2023 Dec; 19(50):e2304603. PubMed ID: 37635120 [TBL] [Abstract][Full Text] [Related]
18. Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation. Liu Y; Zhang S; Song R; Zeng H; Wang L Nano Lett; 2024 Jan; 24(1):26-34. PubMed ID: 38117701 [TBL] [Abstract][Full Text] [Related]
19. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Lin YC; Chen HH; Chu CW; Yeh LH Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]