These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38696410)

  • 1. A cautionary tale about properly vetting datasets used in supervised learning predicting metabolic pathway involvement.
    Huckvale ED; Moseley HNB
    PLoS One; 2024; 19(5):e0299583. PubMed ID: 38696410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark Dataset for Training Machine Learning Models to Predict the Pathway Involvement of Metabolites.
    Huckvale ED; Powell CD; Jin H; Moseley HNB
    Metabolites; 2023 Nov; 13(11):. PubMed ID: 37999216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites.
    Huckvale ED; Powell CD; Jin H; Moseley HNB
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the Pathway Involvement of Metabolites Based on Combined Metabolite and Pathway Features.
    Huckvale ED; Moseley HNB
    Metabolites; 2024 May; 14(5):. PubMed ID: 38786743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of plant secondary metabolic pathways using deep transfer learning.
    Bao H; Zhao J; Zhao X; Zhao C; Lu X; Xu G
    BMC Bioinformatics; 2023 Sep; 24(1):348. PubMed ID: 37726702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting The Pathway Involvement Of Metabolites Based on Combined Metabolite and Pathway Features.
    Huckvale ED; Moseley HNB
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica.
    Calderon-Ramirez S; Murillo-Hernandez D; Rojas-Salazar K; Elizondo D; Yang S; Moemeni A; Molina-Cabello M
    Med Biol Eng Comput; 2022 Apr; 60(4):1159-1175. PubMed ID: 35239108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.
    Nandi S; Subramanian A; Sarkar RR
    Mol Biosyst; 2017 Jul; 13(8):1584-1596. PubMed ID: 28671706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on machine learning approaches and trends in drug discovery.
    Carracedo-Reboredo P; Liñares-Blanco J; Rodríguez-Fernández N; Cedrón F; Novoa FJ; Carballal A; Maojo V; Pazos A; Fernandez-Lozano C
    Comput Struct Biotechnol J; 2021; 19():4538-4558. PubMed ID: 34471498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting metabolic modules in incomplete bacterial genomes with MetaPathPredict.
    Geller-McGrath D; Konwar KM; Edgcomb VP; Pachiadaki M; Roddy JW; Wheeler TJ; McDermott JE
    Elife; 2024 May; 13():. PubMed ID: 38696239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging.
    Wolf D; Payer T; Lisson CS; Lisson CG; Beer M; Götz M; Ropinski T
    Sci Rep; 2023 Nov; 13(1):20260. PubMed ID: 37985685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PriPath: identifying dysregulated pathways from differential gene expression via grouping, scoring, and modeling with an embedded feature selection approach.
    Yousef M; Ozdemir F; Jaber A; Allmer J; Bakir-Gungor B
    BMC Bioinformatics; 2023 Feb; 24(1):60. PubMed ID: 36823571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning self-supervised molecular representations for drug-drug interaction prediction.
    Kpanou R; Dallaire P; Rousseau E; Corbeil J
    BMC Bioinformatics; 2024 Jan; 25(1):47. PubMed ID: 38291362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DREAMER: a computational framework to evaluate readiness of datasets for machine learning.
    Ahangaran M; Zhu H; Li R; Yin L; Jang J; Chaudhry AP; Farrer LA; Au R; Kolachalama VB
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):152. PubMed ID: 38831432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GC-EI-MS datasets of trimethylsilyl (TMS) and
    Ljoncheva M; Stevanoska S; Kosjek T; Džeroski S
    Data Brief; 2023 Jun; 48():109138. PubMed ID: 37128582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.