BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38696441)

  • 1. 3D Bioprinting of Sugar Beet Pectin through Horseradish Peroxidase-Catalyzed Cross-Linking.
    Mubarok W; Zhang C; Sakai S
    ACS Appl Bio Mater; 2024 May; 7(5):3506-3514. PubMed ID: 38696441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drop-On-Drop Multimaterial 3D Bioprinting Realized by Peroxidase-Mediated Cross-Linking.
    Sakai S; Ueda K; Gantumur E; Taya M; Nakamura M
    Macromol Rapid Commun; 2018 Feb; 39(3):. PubMed ID: 29226501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxidase-catalyzed microextrusion bioprinting of cell-laden hydrogel constructs in vaporized ppm-level hydrogen peroxide.
    Sakai S; Mochizuki K; Qu Y; Mail M; Nakahata M; Taya M
    Biofabrication; 2018 Sep; 10(4):045007. PubMed ID: 30137024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light photocrosslinking of sugar beet pectin for 3D bioprinting applications.
    Mubarok W; Elvitigala KCML; Kotani T; Sakai S
    Carbohydr Polym; 2023 Sep; 316():121026. PubMed ID: 37321724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeform 3D Bioprinting Involving Ink Gelation by Cascade Reaction of Oxidase and Peroxidase: A Feasibility Study Using Hyaluronic Acid-Based Ink.
    Sakai S; Harada R; Kotani T
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horseradish Peroxidase-Mediated Bioprinting via Bioink Gelation by Alternately Extruded Support Material.
    Kotani T; Mubarok W; Hananouchi T; Sakai S
    ACS Biomater Sci Eng; 2023 Oct; 9(10):5804-5812. PubMed ID: 37738620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation.
    Gantumur E; Nakahata M; Kojima M; Sakai S
    Int J Bioprint; 2020; 6(1):250. PubMed ID: 32596552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Hydrogen Peroxide-Mediated Cross-Linking and Degradation on Cell-Adhesive Gelatin Hydrogels.
    Mubarok W; Qu Y; Sakai S
    ACS Appl Bio Mater; 2021 May; 4(5):4184-4190. PubMed ID: 35006831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds.
    Carnes ME; Gonyea CR; Mooney RG; Njihia JW; Coburn JM; Pins GD
    Tissue Eng Part C Methods; 2020 Jun; 26(6):317-331. PubMed ID: 32364015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ gellable sugar beet pectin via enzyme-catalyzed coupling reaction of feruloyl groups for biomedical applications.
    Takei T; Sugihara K; Ijima H; Kawakami K
    J Biosci Bioeng; 2011 Nov; 112(5):491-4. PubMed ID: 21807557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Bioprinting of Reinforced Vessels by Dual-Cross-linked Biocompatible Hydrogels.
    Peng K; Liu X; Zhao H; Lu H; Lv F; Liu L; Huang Y; Wang S; Gu Q
    ACS Appl Bio Mater; 2021 May; 4(5):4549-4556. PubMed ID: 35006791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of phenol-grafted polyglucuronic acid and its application to extrusion-based bioprinting inks.
    Sakai S; Kotani T; Harada R; Goto R; Morita T; Bouissil S; Dubessay P; Pierre G; Michaud P; El Boutachfaiti R; Nakahata M; Kojima M; Petit E; Delattre C
    Carbohydr Polym; 2022 Feb; 277():118820. PubMed ID: 34893237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks.
    Sakai S; Morita T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2589-2597. PubMed ID: 35608818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual crosslinking silk fibroin/pectin-based bioink development and the application on neural stem/progenitor cells spheroid laden 3D bioprinting.
    Lee HW; Chen KT; Li YE; Yeh YC; Chiang CY; Lee IC
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131720. PubMed ID: 38677692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications.
    Khanmohammadi M; Dastjerdi MB; Ai A; Ahmadi A; Godarzi A; Rahimi A; Ai J
    Biomater Sci; 2018 May; 6(6):1286-1298. PubMed ID: 29714366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.