These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 38696451)

  • 1. Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening.
    Chandraghatgi R; Ji HF; Rosen GL; Sokhansanj BA
    J Chem Inf Model; 2024 May; 64(9):3826-3840. PubMed ID: 38696451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment databases from screened ligands for drug discovery (FDSL-DD).
    Wilson J; Sokhansanj BA; Chong WC; Chandraghatgi R; Rosen GL; Ji HF
    J Mol Graph Model; 2024 Mar; 127():108669. PubMed ID: 38011826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions.
    Dhakal A; McKay C; Tanner JJ; Cheng J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counting on Fragment Based Drug Design Approach for Drug Discovery.
    Kashyap A; Singh PK; Silakari O
    Curr Top Med Chem; 2018; 18(27):2284-2293. PubMed ID: 30499406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterated Virtual Screening-Assisted Antiviral and Enzyme Inhibition Assays Reveal the Discovery of Novel Promising Anti-SARS-CoV-2 with Dual Activity.
    Hamdy R; Fayed B; Mostafa A; Shama NMA; Mahmoud SH; Mehta CH; Nayak Y; M Soliman SS
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment informatics and computational fragment-based drug design: an overview and update.
    Sheng C; Zhang W
    Med Res Rev; 2013 May; 33(3):554-98. PubMed ID: 22430881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Silico Structure-Based Approach for Group Efficiency Estimation in Fragment-Based Drug Design Using Evaluation of Fragment Contributions.
    Shulga DA; Ivanov NN; Palyulin VA
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-reference poly-conformational method for
    Alexandrov V; Kirpich A; Kantidze O; Gankin Y
    PeerJ; 2022; 10():e14252. PubMed ID: 36447514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery.
    Yamaotsu N; Hirono S
    J Comput Aided Mol Des; 2018 Nov; 32(11):1229-1245. PubMed ID: 30196523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening.
    Pencheva T; Lagorce D; Pajeva I; Villoutreix BO; Miteva MA
    BMC Bioinformatics; 2008 Oct; 9():438. PubMed ID: 18925937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR-based screening methods for lead discovery.
    Vogtherr M; Fiebig K
    EXS; 2003; (93):183-202. PubMed ID: 12613177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment based drug design: from experimental to computational approaches.
    Kumar A; Voet A; Zhang KY
    Curr Med Chem; 2012; 19(30):5128-47. PubMed ID: 22934764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment-based drug discovery-the importance of high-quality molecule libraries.
    Bon M; Bilsland A; Bower J; McAulay K
    Mol Oncol; 2022 Nov; 16(21):3761-3777. PubMed ID: 35749608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: Identification of an allosteric small-molecule binding site on the Nsp13 helicase.
    Freidel MR; Armen RS
    PLoS One; 2021; 16(2):e0246181. PubMed ID: 33596235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening.
    Nagamine N; Shirakawa T; Minato Y; Torii K; Kobayashi H; Imoto M; Sakakibara Y
    PLoS Comput Biol; 2009 Jun; 5(6):e1000397. PubMed ID: 19503826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.
    Fukunishi Y
    Curr Top Med Chem; 2010; 10(6):680-94. PubMed ID: 20337587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing an Analogue Based In Silico Pipeline in the Pursuit of Novel Inhibitory Scaffolds against the SARS Coronavirus 2 Papain-Like Protease.
    Hajbabaie R; Harper MT; Rahman T
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33672721
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    de Souza Neto LR; Moreira-Filho JT; Neves BJ; Maidana RLBR; GuimarĂ£es ACR; Furnham N; Andrade CH; Silva FP
    Front Chem; 2020; 8():93. PubMed ID: 32133344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.