These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 38696451)
41. ChemBoost: A Chemical Language Based Approach for Protein - Ligand Binding Affinity Prediction. Özçelik R; Öztürk H; Özgür A; Ozkirimli E Mol Inform; 2021 May; 40(5):e2000212. PubMed ID: 33225594 [TBL] [Abstract][Full Text] [Related]
42. Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Rudling A; Gustafsson R; Almlöf I; Homan E; Scobie M; Warpman Berglund U; Helleday T; Stenmark P; Carlsson J J Med Chem; 2017 Oct; 60(19):8160-8169. PubMed ID: 28929756 [TBL] [Abstract][Full Text] [Related]
43. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Meanwell NA Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149 [TBL] [Abstract][Full Text] [Related]
44. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery. Gozalbes R; Carbajo RJ; Pineda-Lucena A Curr Med Chem; 2010; 17(17):1769-94. PubMed ID: 20345344 [TBL] [Abstract][Full Text] [Related]
45. Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 M Mohan A; Rendine N; Mohammed MKS; Jeeva A; Ji HF; Talluri VR Mol Divers; 2022 Jun; 26(3):1645-1661. PubMed ID: 34480682 [TBL] [Abstract][Full Text] [Related]
46. Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Coutard B; Decroly E; Li C; Sharff A; Lescar J; Bricogne G; Barral K Antiviral Res; 2014 Jun; 106():61-70. PubMed ID: 24704437 [TBL] [Abstract][Full Text] [Related]
47. Recent Development in Small Molecules for SARS-CoV-2 and the Opportunity for Fragment-Based Drug Discovery. Mahato S Med Chem; 2022; 18(8):847-858. PubMed ID: 35156586 [TBL] [Abstract][Full Text] [Related]
48. CLigOpt: controllable ligand design through target-specific optimization. Li Y; Avelar PHDC; Chen X; Zhang L; Wu M; Tsoka S Bioinformatics; 2024 Sep; 40(Suppl 2):ii62-ii69. PubMed ID: 39230708 [TBL] [Abstract][Full Text] [Related]
49. Fragment-based drug discovery and its application to challenging drug targets. Price AJ; Howard S; Cons BD Essays Biochem; 2017 Nov; 61(5):475-484. PubMed ID: 29118094 [TBL] [Abstract][Full Text] [Related]
50. Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics. Wang Z; Liang H; Cao H; Zhang B; Li J; Wang W; Qin S; Wang Y; Xuan L; Lai L; Shui W Analyst; 2019 May; 144(9):2881-2890. PubMed ID: 30788466 [TBL] [Abstract][Full Text] [Related]
51. AI-guided pipeline for protein-protein interaction drug discovery identifies a SARS-CoV-2 inhibitor. Trepte P; Secker C; Olivet J; Blavier J; Kostova S; Maseko SB; Minia I; Silva Ramos E; Cassonnet P; Golusik S; Zenkner M; Beetz S; Liebich MJ; Scharek N; Schütz A; Sperling M; Lisurek M; Wang Y; Spirohn K; Hao T; Calderwood MA; Hill DE; Landthaler M; Choi SG; Twizere JC; Vidal M; Wanker EE Mol Syst Biol; 2024 Apr; 20(4):428-457. PubMed ID: 38467836 [TBL] [Abstract][Full Text] [Related]
52. Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks. Pandey M; Radaeva M; Mslati H; Garland O; Fernandez M; Ester M; Cherkasov A Molecules; 2022 Aug; 27(16):. PubMed ID: 36014351 [TBL] [Abstract][Full Text] [Related]
53. Machine learning assisted design of highly active peptides for drug discovery. Giguère S; Laviolette F; Marchand M; Tremblay D; Moineau S; Liang X; Biron É; Corbeil J PLoS Comput Biol; 2015 Apr; 11(4):e1004074. PubMed ID: 25849257 [TBL] [Abstract][Full Text] [Related]
54. Drug repurposing: identification of SARS-CoV-2 potential inhibitors by virtual screening and pharmacokinetics strategies. Rashid Z; Fatima A; Khan A; Matthew J; Yousaf MZ; Nadeem N; Hasan TN; Rehman MU; Naqvi SS; Khan SJ J Infect Dev Ctries; 2024 Apr; 18(4):520-531. PubMed ID: 38728643 [TBL] [Abstract][Full Text] [Related]
55. Fragment Library of Natural Products and Compound Databases for Drug Discovery. Chávez-Hernández AL; Sánchez-Cruz N; Medina-Franco JL Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33172012 [TBL] [Abstract][Full Text] [Related]
56. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. Talevi A Methods Mol Biol; 2024; 2714():1-20. PubMed ID: 37676590 [TBL] [Abstract][Full Text] [Related]
57. Discovery of putative inhibitors against main drivers of SARS-CoV-2 infection: Insight from quantum mechanical evaluation and molecular modeling. Balogun TA; Chukwudozie OS; Ogbodo UC; Junaid IO; Sunday OA; Ige OM; Aborode AT; Akintayo AD; Oluwarotimi EA; Oluwafemi IO; Saibu OA; Chuckwuemaka P; Omoboyowa DA; Alausa AO; Atasie NH; Ilesanmi A; Dairo G; Tiamiyu ZA; Batiha GE; Alkhuriji AF; Al-Megrin WAI; De Waard M; Sabatier JM Front Chem; 2022; 10():964446. PubMed ID: 36304744 [TBL] [Abstract][Full Text] [Related]
58. ACFIS: a web server for fragment-based drug discovery. Hao GF; Jiang W; Ye YN; Wu FX; Zhu XL; Guo FB; Yang GF Nucleic Acids Res; 2016 Jul; 44(W1):W550-6. PubMed ID: 27150808 [TBL] [Abstract][Full Text] [Related]
59. Fragment-based drug discovery for disorders of the central nervous system: designing better drugs piece by piece. Chan BWGL; Lynch NB; Tran W; Joyce JM; Savage GP; Meutermans W; Montgomery AP; Kassiou M Front Chem; 2024; 12():1379518. PubMed ID: 38698940 [TBL] [Abstract][Full Text] [Related]
60. NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank. Ru X; Ye X; Sakurai T; Zou Q Bioinformatics; 2022 Mar; 38(7):1964-1971. PubMed ID: 35134828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]