These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 38696451)
81. Virtual fragment screening: discovery of histamine H3 receptor ligands using ligand-based and protein-based molecular fingerprints. Sirci F; Istyastono EP; Vischer HF; Kooistra AJ; Nijmeijer S; Kuijer M; Wijtmans M; Mannhold R; Leurs R; de Esch IJ; de Graaf C J Chem Inf Model; 2012 Dec; 52(12):3308-24. PubMed ID: 23140085 [TBL] [Abstract][Full Text] [Related]
82. Active learning for computational chemogenomics. Reker D; Schneider P; Schneider G; Brown JB Future Med Chem; 2017 Mar; 9(4):381-402. PubMed ID: 28263088 [TBL] [Abstract][Full Text] [Related]
83. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening. Zhou H; Cao H; Skolnick J J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022 [TBL] [Abstract][Full Text] [Related]
84. The QSAR Paradigm in Fragment-Based Drug Discovery: From the Virtual Generation of Target Inhibitors to Multi-Scale Modeling. Kleandrova VV; Speck-Planche A Mini Rev Med Chem; 2020; 20(14):1357-1374. PubMed ID: 32013845 [TBL] [Abstract][Full Text] [Related]
85. Computational Approach to Combat COVID-19 Infection: Emerging Tools for Accelerating Drug Research. Sahoo BM; Bhattamisra SK; Das S; Tiwari A; Tiwari V; Kumar M; Singh S Curr Drug Discov Technol; 2022; 19(3):e170122200314. PubMed ID: 35040405 [TBL] [Abstract][Full Text] [Related]
86. Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification. Polash AH; Nakano T; Takeda S; Brown JB Molecules; 2019 Jul; 24(15):. PubMed ID: 31357419 [TBL] [Abstract][Full Text] [Related]
88. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery. Williams G; Ferenczy GG; Ulander J; Keserű GM Drug Discov Today; 2017 Apr; 22(4):681-689. PubMed ID: 27916639 [TBL] [Abstract][Full Text] [Related]
89. Efficiently driving protein-based fragment screening and lead discovery using two-dimensional NMR. Peng C; Namanja AT; Munoz E; Wu H; Frederick TE; Maestre-Martinez M; Iglesias Fernandez I; Sun Q; Cobas C; Sun C; Petros AM J Biomol NMR; 2023 Apr; 77(1-2):39-53. PubMed ID: 36512150 [TBL] [Abstract][Full Text] [Related]
90. Bung N; Krishnan SR; Bulusu G; Roy A Future Med Chem; 2021 Mar; 13(6):575-585. PubMed ID: 33590764 [No Abstract] [Full Text] [Related]
91. In-silico pharmacophoric and molecular docking-based drug discovery against the Main Protease (Mpro) of SARS-CoV-2, a causative agent COVID-19. Haider Z; Subhani MM; Farooq MA; Ishaq M; Khalid M; Akram MN; Khan RSA; Niazi AK Pak J Pharm Sci; 2020 Nov; 33(6):2697-2705. PubMed ID: 33867348 [TBL] [Abstract][Full Text] [Related]
92. Development of Computational Approaches with a Fragment-Based Drug Design Strategy: In Silico Hsp90 Inhibitors Discovery. León R; Soto-Delgado J; Montero E; Vargas M Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948022 [TBL] [Abstract][Full Text] [Related]
93. Multi-stage structure-based virtual screening approach towards identification of potential SARS-CoV-2 NSP13 helicase inhibitors. El Hassab MA; Eldehna WM; Al-Rashood ST; Alharbi A; Eskandrani RO; Alkahtani HM; Elkaeed EB; Abou-Seri SM J Enzyme Inhib Med Chem; 2022 Dec; 37(1):563-572. PubMed ID: 35012384 [TBL] [Abstract][Full Text] [Related]
94. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization. Ustach VD; Lakkaraju SK; Jo S; Yu W; Jiang W; MacKerell AD J Chem Inf Model; 2019 Jun; 59(6):3018-3035. PubMed ID: 31034213 [TBL] [Abstract][Full Text] [Related]
95. An Effective MM/GBSA Protocol for Absolute Binding Free Energy Calculations: A Case Study on SARS-CoV-2 Spike Protein and the Human ACE2 Receptor. Forouzesh N; Mishra N Molecules; 2021 Apr; 26(8):. PubMed ID: 33923909 [TBL] [Abstract][Full Text] [Related]
96. User-Friendly Quantum Mechanics: Applications for Drug Discovery. Kotev M; Sarrat L; Gonzalez CD Methods Mol Biol; 2020; 2114():231-255. PubMed ID: 32016897 [TBL] [Abstract][Full Text] [Related]
97. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning. Zhang H; Huang J; Xie J; Huang W; Yang Y; Xu M; Lei J; Chen H J Chem Inf Model; 2024 Feb; 64(3):666-676. PubMed ID: 38241022 [TBL] [Abstract][Full Text] [Related]
98. Enabling target-aware molecule generation to follow multi objectives with Pareto MCTS. Yang Y; Chen G; Li J; Li J; Zhang O; Zhang X; Li L; Hao J; Wang E; Heng PA Commun Biol; 2024 Sep; 7(1):1074. PubMed ID: 39223327 [TBL] [Abstract][Full Text] [Related]
99. Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space. Wang M; Wu Z; Wang J; Weng G; Kang Y; Pan P; Li D; Deng Y; Yao X; Bing Z; Hsieh CY; Hou T J Chem Inf Model; 2024 Feb; 64(4):1213-1228. PubMed ID: 38302422 [TBL] [Abstract][Full Text] [Related]
100. Systematic computational strategies for identifying protein targets and lead discovery. Kataria A; Srivastava A; Singh DD; Haque S; Han I; Yadav DK RSC Med Chem; 2024 Jul; 15(7):2254-2269. PubMed ID: 39026640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]