These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38696523)
1. A calculation method for optical properties of yolk shell based on deep learning. He W; Ma X; Zhang J; Xu K; Gao J; Lei S; Zhan C PLoS One; 2024; 19(5):e0302262. PubMed ID: 38696523 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. Gao J; Liang G; Cheung JS; Pan Y; Kuang Y; Zhao F; Zhang B; Zhang X; Wu EX; Xu B J Am Chem Soc; 2008 Sep; 130(35):11828-33. PubMed ID: 18681432 [TBL] [Abstract][Full Text] [Related]
3. Optimizing the Electromagnetic Wave Absorption Performances of Designed Co Li H; Bao S; Li Y; Huang Y; Chen J; Zhao H; Jiang Z; Kuang Q; Xie Z ACS Appl Mater Interfaces; 2018 Aug; 10(34):28839-28849. PubMed ID: 30079724 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. Liu J; Cheng J; Che R; Xu J; Liu M; Liu Z ACS Appl Mater Interfaces; 2013 Apr; 5(7):2503-9. PubMed ID: 23474005 [TBL] [Abstract][Full Text] [Related]
5. Optical property changes as a result of protein denature in albumen and yolk. Pickering JW J Photochem Photobiol B; 1992 Oct; 16(2):101-11. PubMed ID: 1474420 [TBL] [Abstract][Full Text] [Related]
6. Large scale production of yolk-shell β-tricalcium phosphate powders, and their bioactivities as novel bone substitutes. Cho JS; Lee JH; Kang YC Phys Chem Chem Phys; 2014 Aug; 16(32):16962-7. PubMed ID: 25005151 [TBL] [Abstract][Full Text] [Related]
7. Solvent-Dependent Adsorption-Driven Mechanism for MOFs-Based Yolk-Shell Nanostructures. Wang W; Xu B; Pan X; Zhang J; Liu H Angew Chem Int Ed Engl; 2021 Mar; 60(14):7802-7808. PubMed ID: 33404175 [TBL] [Abstract][Full Text] [Related]
8. [Determination of Cu in Shell of Preserved Egg by LIBS Coupled with PLS]. Hu HQ; Xu XH; Liu MH; Tu JP; Huang L; Huang L; Yao MY; Chen TB; Yang P Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3500-4. PubMed ID: 26964238 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Liu J; Xu J; Che R; Chen H; Liu M; Liu Z Chemistry; 2013 May; 19(21):6746-52. PubMed ID: 23519995 [TBL] [Abstract][Full Text] [Related]
10. Yolk-Shell Ni@SnO Zhao B; Guo X; Zhao W; Deng J; Shao G; Fan B; Bai Z; Zhang R ACS Appl Mater Interfaces; 2016 Oct; 8(42):28917-28925. PubMed ID: 27700044 [TBL] [Abstract][Full Text] [Related]
11. Template-Engaged Solid-State Synthesis of Barium Magnesium Silicate Yolk@Shell Particles and Their High Photoluminescence Efficiency. Chen X; Kim WS Chemistry; 2016 May; 22(21):7190-7. PubMed ID: 27059894 [TBL] [Abstract][Full Text] [Related]
12. Inverse design of core-shell particles with discrete material classes using neural networks. Kuhn L; Repän T; Rockstuhl C Sci Rep; 2022 Nov; 12(1):19019. PubMed ID: 36347865 [TBL] [Abstract][Full Text] [Related]
13. Designing Yolk-Shell Nanostructures for Reversible Water-Vapor-Responsive Dual-Mode Switching of Fluorescence and Structural Color. Zuo ZH; Feng ZW; Peng YY; Su Y; Liu ZQ; Li G; Yin Y; Chen Y ACS Nano; 2024 Feb; 18(5):4456-4466. PubMed ID: 38276073 [TBL] [Abstract][Full Text] [Related]
14. In Situ Reduced Multi-Core Yolk-Shell Co@C Nanospheres for Broadband Microwave Absorption. Zhang M; Qiu J; Xin Z; Sun X Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443132 [TBL] [Abstract][Full Text] [Related]
15. Controllable Synthesis of Carbon Yolk-Shell Microsphere and Application of Metal Compound-Carbon Yolk-Shell as Effective Anode Material for Alkali-Ion Batteries. Kim YB; Seo HY; Kim SH; Kim TH; Choi JH; Cho JS; Kang YC; Park GD Small Methods; 2023 Mar; 7(3):e2201370. PubMed ID: 36653930 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of dual temperature - and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Nikravan G; Haddadi-Asl V; Salami-Kalajahi M Colloids Surf B Biointerfaces; 2018 May; 165():1-8. PubMed ID: 29448215 [TBL] [Abstract][Full Text] [Related]
17. Deep learning-based prediction of coronary artery stenosis resistance. Sun H; Liu J; Feng Y; Xi X; Xu K; Zhang L; Liu J; Li B; Liu Y Am J Physiol Heart Circ Physiol; 2022 Dec; 323(6):H1194-H1205. PubMed ID: 36269648 [TBL] [Abstract][Full Text] [Related]
18. Yolk-Shell-Structured Nanospheres with Goat Pupil-Like S-Doped SnSe Yolk and Hollow Carbon-Shell Configuration as Anode Material for Sodium-Ion Storage. Park GD; Kang YC Small Methods; 2021 Jun; 5(6):e2100302. PubMed ID: 34927908 [TBL] [Abstract][Full Text] [Related]
19. Determination of yolk contamination in liquid egg white using Raman spectroscopy. Cluff K; Konda Naganathan G; Jonnalagada D; Mortensen I; Wehling R; Subbiah J Poult Sci; 2016 Jul; 95(7):1702-1708. PubMed ID: 27118861 [TBL] [Abstract][Full Text] [Related]
20. Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM. Qian F; Chen L; Li J; Ding C; Chen X; Wang J Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31212880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]