These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 38696703)

  • 21. New insights on the reparative cells in bone regeneration and repair.
    Huang S; Jin M; Su N; Chen L
    Biol Rev Camb Philos Soc; 2021 Apr; 96(2):357-375. PubMed ID: 33051970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing.
    Matsumoto T; Kuroda R; Mifune Y; Kawamoto A; Shoji T; Miwa M; Asahara T; Kurosaka M
    Bone; 2008 Sep; 43(3):434-9. PubMed ID: 18547890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skeletal stem cells: insights into maintaining and regenerating the skeleton.
    Serowoky MA; Arata CE; Crump JG; Mariani FV
    Development; 2020 Mar; 147(5):. PubMed ID: 32161063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair.
    Minear S; Leucht P; Miller S; Helms JA
    J Bone Miner Res; 2010 Jun; 25(6):1196-207. PubMed ID: 20200943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stem and progenitor cells in skeletal development.
    Ono N; Balani DH; Kronenberg HM
    Curr Top Dev Biol; 2019; 133():1-24. PubMed ID: 30902249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma.
    Otani S; Ohnuma M; Ito K; Matsushita Y
    Front Endocrinol (Lausanne); 2023; 14():1181204. PubMed ID: 37229448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneity of murine periosteum progenitors involved in fracture healing.
    Matthews BG; Novak S; Sbrana FV; Funnell JL; Cao Y; Buckels EJ; Grcevic D; Kalajzic I
    Elife; 2021 Feb; 10():. PubMed ID: 33560227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments.
    Solidum JGN; Jeong Y; Heralde F; Park D
    Front Physiol; 2023; 14():1137063. PubMed ID: 36926193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of an injury-induced skeletal progenitor.
    Marecic O; Tevlin R; McArdle A; Seo EY; Wearda T; Duldulao C; Walmsley GG; Nguyen A; Weissman IL; Chan CK; Longaker MT
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9920-5. PubMed ID: 26216955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair.
    Marcucio RS; Miclau T; Bahney CS
    J Dent Res; 2023 Jan; 102(1):13-20. PubMed ID: 36303415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration.
    Dirckx N; Van Hul M; Maes C
    Birth Defects Res C Embryo Today; 2013 Sep; 99(3):170-91. PubMed ID: 24078495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aging periosteal progenitor cells have reduced regenerative responsiveness to bone injury and to the anabolic actions of PTH 1-34 treatment.
    Yukata K; Xie C; Li TF; Takahata M; Hoak D; Kondabolu S; Zhang X; Awad HA; Schwarz EM; Beck CA; Jonason JH; O'Keefe RJ
    Bone; 2014 May; 62():79-89. PubMed ID: 24530870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells.
    Chan CK; Lindau P; Jiang W; Chen JY; Zhang LF; Chen CC; Seita J; Sahoo D; Kim JB; Lee A; Park S; Nag D; Gong Y; Kulkarni S; Luppen CA; Theologis AA; Wan DC; DeBoer A; Seo EY; Vincent-Tompkins JD; Loh K; Walmsley GG; Kraft DL; Wu JC; Longaker MT; Weissman IL
    Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12643-8. PubMed ID: 23858471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Niches for Skeletal Stem Cells of Mesenchymal Origin.
    Kurenkova AD; Medvedeva EV; Newton PT; Chagin AS
    Front Cell Dev Biol; 2020; 8():592. PubMed ID: 32754592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of adult human skeletal cells in different tissues reveals a CD90
    Cao Y; Bolam SM; Boss AL; Murray HC; Munro JT; Poulsen RC; Dalbeth N; Brooks AES; Matthews BG
    Bone; 2024 Jan; 178():116926. PubMed ID: 37793499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent mesenchymal progenitor pools respectively produce and maintain osteogenic and chondrogenic cells in zebrafish.
    Komiya H; Sato Y; Kimura H; Kawakami A
    Dev Growth Differ; 2024 Feb; 66(2):161-171. PubMed ID: 38193362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
    Bernhard J; Ferguson J; Rieder B; Heimel P; Nau T; Tangl S; Redl H; Vunjak-Novakovic G
    Biomaterials; 2017 Sep; 139():202-212. PubMed ID: 28622604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skeletal Stem Cells for Bone Development and Repair: Diversity Matters.
    Matsushita Y; Ono W; Ono N
    Curr Osteoporos Rep; 2020 Jun; 18(3):189-198. PubMed ID: 32172443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review.
    Owston H; Giannoudis PV; Jones E
    Injury; 2016 Dec; 47 Suppl 6():S3-S15. PubMed ID: 28040084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone Marrow Niches for Skeletal Progenitor Cells and their Inhabitants in Health and Disease.
    Herrmann M; Jakob F
    Curr Stem Cell Res Ther; 2019; 14(4):305-319. PubMed ID: 30674266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.