These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38696758)
1. Integrated convolution and self-attention for improving peptide toxicity prediction. Jiao S; Ye X; Sakurai T; Zou Q; Liu R Bioinformatics; 2024 May; 40(5):. PubMed ID: 38696758 [TBL] [Abstract][Full Text] [Related]
2. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation. Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345 [TBL] [Abstract][Full Text] [Related]
3. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Wei L; Ye X; Sakurai T; Mu Z; Wei L Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757 [TBL] [Abstract][Full Text] [Related]
4. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure. Yan K; Lv H; Guo Y; Peng W; Liu B Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186 [TBL] [Abstract][Full Text] [Related]
5. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder. Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585 [TBL] [Abstract][Full Text] [Related]
6. LLM4THP: a computing tool to identify tumor homing peptides by molecular and sequence representation of large language model based on two-layer ensemble model strategy. Yang S; Xu P Amino Acids; 2024 Oct; 56(1):62. PubMed ID: 39404804 [TBL] [Abstract][Full Text] [Related]
7. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291 [TBL] [Abstract][Full Text] [Related]
8. Attentive Variational Information Bottleneck for TCR-peptide interaction prediction. Grazioli F; Machart P; Mösch A; Li K; Castorina LV; Pfeifer N; Min MR Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36571499 [TBL] [Abstract][Full Text] [Related]
9. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
10. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks. Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490 [TBL] [Abstract][Full Text] [Related]
11. A Computational Predictor for Accurate Identification of Tumor Homing Peptides by Integrating Sequential and Deep BiLSTM Features. Arif R; Kanwal S; Ahmed S; Kabir M Interdiscip Sci; 2024 Jun; 16(2):503-518. PubMed ID: 38733473 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Mei S; Li F; Leier A; Marquez-Lago TT; Giam K; Croft NP; Akutsu T; Smith AI; Li J; Rossjohn J; Purcell AW; Song J Brief Bioinform; 2020 Jul; 21(4):1119-1135. PubMed ID: 31204427 [TBL] [Abstract][Full Text] [Related]
13. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification. Liang X; Li F; Chen J; Li J; Wu H; Li S; Song J; Liu Q Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33316035 [TBL] [Abstract][Full Text] [Related]
14. STM-ac4C: a hybrid model for identification of N4-acetylcytidine (ac4C) in human mRNA based on selective kernel convolution, temporal convolutional network, and multi-head self-attention. Yi M; Zhou F; Deng Y Front Genet; 2024; 15():1408688. PubMed ID: 38873109 [TBL] [Abstract][Full Text] [Related]
15. VISH-Pred: an ensemble of fine-tuned ESM models for protein toxicity prediction. Mall R; Singh A; Patel CN; Guirimand G; Castiglione F Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38842509 [TBL] [Abstract][Full Text] [Related]
16. PredSTP: a highly accurate SVM based model to predict sequential cystine stabilized peptides. Islam SM; Sajed T; Kearney CM; Baker EJ BMC Bioinformatics; 2015 Jul; 16():210. PubMed ID: 26142484 [TBL] [Abstract][Full Text] [Related]
17. pICalculax: Improved Prediction of Isoelectric Point for Modified Peptides. Bjerrum EJ; Jensen JH; Tolborg JL J Chem Inf Model; 2017 Aug; 57(8):1723-1727. PubMed ID: 28671456 [TBL] [Abstract][Full Text] [Related]
18. Effective identification and differential analysis of anticancer peptides. Zhang L; Hu X; Xiao K; Kong L Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816 [TBL] [Abstract][Full Text] [Related]
19. DP-site: A dual deep learning-based method for protein-peptide interaction site prediction. Shafiee S; Fathi A; Taherzadeh G Methods; 2024 Sep; 229():17-29. PubMed ID: 38871095 [TBL] [Abstract][Full Text] [Related]
20. ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism. Wei L; Ye X; Xue Y; Sakurai T; Wei L Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]