These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38696758)
21. HemoFuse: multi-feature fusion based on multi-head cross-attention for identification of hemolytic peptides. Zhao Y; Zhang S; Liang Y Sci Rep; 2024 Sep; 14(1):22518. PubMed ID: 39342017 [TBL] [Abstract][Full Text] [Related]
22. ToxinPred 3.0: An improved method for predicting the toxicity of peptides. Rathore AS; Choudhury S; Arora A; Tijare P; Raghava GPS Comput Biol Med; 2024 Sep; 179():108926. PubMed ID: 39038391 [TBL] [Abstract][Full Text] [Related]
23. Hammock: a hidden Markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets. Krejci A; Hupp TR; Lexa M; Vojtesek B; Muller P Bioinformatics; 2016 Jan; 32(1):9-16. PubMed ID: 26342231 [TBL] [Abstract][Full Text] [Related]
24. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism. Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098 [TBL] [Abstract][Full Text] [Related]
25. Peptriever: a Bi-Encoder approach for large-scale protein-peptide binding search. Gurvich R; Markel G; Tanoli Z; Meirson T Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710496 [TBL] [Abstract][Full Text] [Related]
26. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides. Timmons PB; Hewage CM Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297817 [TBL] [Abstract][Full Text] [Related]
27. Protein-peptide binding residue prediction based on protein language models and cross-attention mechanism. Hu J; Chen KX; Rao B; Ni JY; Thafar MA; Albaradei S; Arif M Anal Biochem; 2024 Nov; 694():115637. PubMed ID: 39121938 [TBL] [Abstract][Full Text] [Related]
28. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning. Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073 [TBL] [Abstract][Full Text] [Related]
29. AutoPeptideML: a study on how to build more trustworthy peptide bioactivity predictors. Fernández-Díaz R; Cossio-Pérez R; Agoni C; Lam HT; Lopez V; Shields DC Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39292535 [TBL] [Abstract][Full Text] [Related]
30. DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction. Qu W; You R; Mamitsuka H; Zhu S Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669154 [TBL] [Abstract][Full Text] [Related]
31. PGAT-ABPp: harnessing protein language models and graph attention networks for antibacterial peptide identification with remarkable accuracy. Hao Y; Liu X; Fu H; Shao X; Cai W Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39120878 [TBL] [Abstract][Full Text] [Related]
32. HighFold: accurately predicting structures of cyclic peptides and complexes with head-to-tail and disulfide bridge constraints. Zhang C; Zhang C; Shang T; Zhu N; Wu X; Duan H Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706323 [TBL] [Abstract][Full Text] [Related]
33. A deep attention model for wide-genome protein-peptide binding affinity prediction at a sequence level. Sun X; Wu Z; Su J; Li C Int J Biol Macromol; 2024 Sep; 276(Pt 2):133811. PubMed ID: 38996881 [TBL] [Abstract][Full Text] [Related]
34. Identifying Antitubercular Peptides via Deep Forest Architecture with Effective Feature Representation. Yao L; Guan J; Li W; Chung CR; Deng J; Chiang YC; Lee TY Anal Chem; 2024 Jan; 96(4):1538-1546. PubMed ID: 38226973 [TBL] [Abstract][Full Text] [Related]
35. Seq-InSite: sequence supersedes structure for protein interaction site prediction. Hosseini S; Golding GB; Ilie L Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38212995 [TBL] [Abstract][Full Text] [Related]
36. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides. He W; Wang Y; Cui L; Su R; Wei L Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948 [TBL] [Abstract][Full Text] [Related]
37. Improving protein-protein interaction prediction using protein language model and protein network features. Hu J; Li Z; Rao B; Thafar MA; Arif M Anal Biochem; 2024 Oct; 693():115550. PubMed ID: 38679191 [TBL] [Abstract][Full Text] [Related]
38. Prediction of drug-likeness using graph convolutional attention network. Sun J; Wen M; Wang H; Ruan Y; Yang Q; Kang X; Zhang H; Zhang Z; Lu H Bioinformatics; 2022 Nov; 38(23):5262-5269. PubMed ID: 36222555 [TBL] [Abstract][Full Text] [Related]
39. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions. Hertz T; Yanover C BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of in silico tools for the prediction of protein and peptide aggregation on diverse datasets. Prabakaran R; Rawat P; Kumar S; Gromiha MM Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34181000 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]