These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38696849)
1. Treatment of chromium-containing sludge using sintering and ironmaking combined technology: A risk-reducing strategy for environmental impact. Fan S; Wei J; Xu X; Yan R; Li Q; Liu Y; Huang Y; Wang Y; Fan G; Zhang L J Environ Manage; 2024 May; 359():120986. PubMed ID: 38696849 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of chromium in real tannery sludge via heat treatment with coal fly ash. Yang Y; Shi S; Zhu C; Chen X; Hao Y; Yan L; Li J; Chen X; Chen B; Ma X; Ma H Chemosphere; 2023 Sep; 335():139180. PubMed ID: 37302500 [TBL] [Abstract][Full Text] [Related]
3. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe Lan Y; Zhang L; Li X; Liu W; Su X; Lin Z Sci Total Environ; 2022 Mar; 813():152637. PubMed ID: 34963612 [TBL] [Abstract][Full Text] [Related]
4. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere. Yang Y; Ma H; Chen X; Zhu C; Li X Environ Res; 2020 Apr; 183():109159. PubMed ID: 32028182 [TBL] [Abstract][Full Text] [Related]
5. A novel strategy of tannery sludge disposal - converting into biochar and reusing for Cr(VI) removal from tannery wastewater. Li Z; Yu D; Wang X; Liu X; Xu Z; Wang Y J Environ Sci (China); 2024 Apr; 138():637-649. PubMed ID: 38135427 [TBL] [Abstract][Full Text] [Related]
6. Solidification/stabilization of chromite ore processing residue via co-sintering with hazardous waste incineration residue. Zhang P; Zeng L; Zhang S; Li C; Li D Environ Sci Pollut Res Int; 2023 Mar; 30(11):29392-29406. PubMed ID: 36417072 [TBL] [Abstract][Full Text] [Related]
7. The role of temperature on Cr(VI) formation and reduction during heating of chromium-containing sludge in the presence of CaO. Mao L; Gao B; Deng N; Zhai J; Zhao Y; Li Q; Cui H Chemosphere; 2015 Nov; 138():197-204. PubMed ID: 26072117 [TBL] [Abstract][Full Text] [Related]
8. Detoxication and recycling of chromium slag and C-bearing dust via composite agglomeration process (CAP)-blast furnace method. Tu Y; Su Z; Zhang Y; Jiang T Waste Manag; 2023 Sep; 171():227-236. PubMed ID: 37666148 [TBL] [Abstract][Full Text] [Related]
9. Effect of waste addition points on the chromium leachability of cement produced by co-processing of tannery sludge. Shen D; Huang M; Feng H; Li N; Zhou Y; Long Y Waste Manag; 2017 Mar; 61():345-353. PubMed ID: 28190680 [TBL] [Abstract][Full Text] [Related]
10. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation. Kavouras P; Pantazopoulou E; Varitis S; Vourlias G; Chrissafis K; Dimitrakopulos GP; Mitrakas M; Zouboulis AI; Karakostas T; Xenidis A J Hazard Mater; 2015; 283():672-9. PubMed ID: 25464309 [TBL] [Abstract][Full Text] [Related]
11. Understanding Chromium Slag Recycling with Sintering-Ironmaking Processes: Influence of Cr Xu J; Ma G; Liu M; Zhang X; Zheng D; Du T; Luo Y; Zhang W Molecules; 2024 May; 29(10):. PubMed ID: 38792243 [TBL] [Abstract][Full Text] [Related]
12. Industrial steel waste recovery pathway: Production of innovative supported catalyst and its application on hexavalent chromium reduction studies. Novack AM; Costa TC; Hackbarth FV; Marinho BA; Valle JAB; Souza AAU; Vilar VJP; Souza SMAGU Chemosphere; 2022 Jul; 298():134216. PubMed ID: 35278443 [TBL] [Abstract][Full Text] [Related]
13. Thermal stabilization of chromium slag by sewage sludge: effects of sludge quantity and temperature. Wu C; Zhang H; He P; Shao L J Environ Sci (China); 2010; 22(7):1110-5. PubMed ID: 21175004 [TBL] [Abstract][Full Text] [Related]
14. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders. Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient removal of hexavalent chromium by magnetic Fe-C composite from reed straw and electric furnace dust waste. Wang FP; Zeng YN; Wang YT; Li JG; Zhang X; Ji AM; Kang LL; Ji R; Yu Q; Gao D; Wang XM; Fang Z Environ Sci Pollut Res Int; 2023 Mar; 30(12):33737-33755. PubMed ID: 36495434 [TBL] [Abstract][Full Text] [Related]
16. Effects of chromium on activated sludge and on the performance of wastewater treatment plants: A review. Vaiopoulou E; Gikas P Water Res; 2012 Mar; 46(3):549-70. PubMed ID: 22154108 [TBL] [Abstract][Full Text] [Related]
17. Treatability of chromite ore processing waste by leaching. Unlü K; Haskök S Waste Manag Res; 2001 Jun; 19(3):217-28. PubMed ID: 11699856 [TBL] [Abstract][Full Text] [Related]
18. Study on application of biological iron sulfide composites in treating vanadium-extraction wastewater containing chromium (VI) and chromium reclamation. Xie YF; Li XD; Li FD J Environ Biol; 2013 Apr; 34(2 Spec No):301-5. PubMed ID: 24620597 [TBL] [Abstract][Full Text] [Related]
19. Cr(VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement. Singh IB; Singh DR Environ Technol; 2002 Jan; 23(1):85-95. PubMed ID: 11918404 [TBL] [Abstract][Full Text] [Related]
20. Ball-milled sulfide iron-copper bimetals based composite permeable materials for Cr (VI) removal: Effects of preparation parameters and kinetics study. Yang Z; Ding G; Yan L; Wang R; Zhang W; Wang X; Rao P Chemosphere; 2023 Oct; 338():139388. PubMed ID: 37423409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]