These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38697133)

  • 21. Poly(tris(4-carbazoyl-9-ylphenyl)amine)/Three Poly(3,4-ethylenedioxythiophene) Derivatives in Complementary High-Contrast Electrochromic Devices.
    Kuo CW; Chang JK; Lin YC; Wu TY; Lee PY; Ho TH
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Healing Ionogel-Enabled Self-Healing and Wide-Temperature Flexible Zinc-Air Batteries with Ultra-Long Cycling Lives.
    Li H; Xu F; Li Y; Sun J
    Adv Sci (Weinh); 2024 Jul; 11(25):e2402193. PubMed ID: 38569521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymeric Ion Conductors Based on Sono-Polymerized Zwitterionic Polymers for Electrochromic Supercapacitors with Improved Shelf-Life Stability.
    Lee JK; Kim YM; Moon HC
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100468. PubMed ID: 34555244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.
    Deepa M; Awadhia A; Bhandari S
    Phys Chem Chem Phys; 2009 Jul; 11(27):5674-85. PubMed ID: 19842485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(thieno[3,4-b]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance.
    Wang Z; Xu J; Lu B; Zhang S; Qin L; Mo D; Zhen S
    Langmuir; 2014 Dec; 30(51):15581-9. PubMed ID: 25469424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries.
    Hyun WJ; Thomas CM; Luu NS; Hersam MC
    Adv Mater; 2021 Apr; 33(13):e2007864. PubMed ID: 33594680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Healable, Highly Conductive, Flexible, and Nonflammable Supramolecular Ionogel Electrolytes for Lithium-Ion Batteries.
    Guo P; Su A; Wei Y; Liu X; Li Y; Guo F; Li J; Hu Z; Sun J
    ACS Appl Mater Interfaces; 2019 May; 11(21):19413-19420. PubMed ID: 31058482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochromic Devices Based on 2D MoO
    Yu H; Fang H; Jing K; Ma H; Wu L; Chai Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):18052-18062. PubMed ID: 38546439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Formation of Ionic Porous Organic Polymers Based on Viologen for Electrochromic Applications.
    Shao M; Dong J; Lv X; Liu C; Xia M; Cui J; Tameev A; Ouyang M; Zhang C
    Macromol Rapid Commun; 2024 Jul; 45(13):e2400031. PubMed ID: 38620002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Highly Ionic Conductive, Healable, and Adhesive Polysiloxane-Supported Ionogel.
    Li Z; Wang J; Hu R; Lv C; Zheng J
    Macromol Rapid Commun; 2019 Apr; 40(7):e1800776. PubMed ID: 30653789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screen-Printable Hexagonal Boron Nitride Ionogel Electrolytes for Mechanically Deformable Solid-State Lithium-Ion Batteries.
    Hyun WJ; Thomas CM; Chaney LE; Mazarin de Moraes AC; Hersam MC
    Nano Lett; 2022 Jul; 22(13):5372-5378. PubMed ID: 35727221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation.
    Chopade SA; So S; Hillmyer MA; Lodge TP
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6200-10. PubMed ID: 26927732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wearable Sensors Adapted to Extreme Environments Based on the Robust Ionogel Electrolytes with Dual Hydrogen Networks.
    Hu A; Liu C; Cui Z; Cong Z; Niu J
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12713-12721. PubMed ID: 35230073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly flexible electrochromic devices enabled by electroplated nickel grid electrodes and multifunctional hydrogels.
    Zhao SQ; Liu YH; Ming Z; Chen C; Xu WW; Chen L; Huang W
    Opt Express; 2019 Oct; 27(21):29547-29557. PubMed ID: 31684214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Coloration Time of Electrochromic Device Using Integrated WO
    Kwon H; Kim S; Ham M; Park Y; Kim H; Lee W; Lee H
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enabling High-Voltage "Superconcentrated Ionogel-in-Ceramic" Hybrid Electrolyte with Ultrahigh Ionic Conductivity and Single Li
    Zhai Y; Hou W; Tao M; Wang Z; Chen Z; Zeng Z; Liang X; Paoprasert P; Yang Y; Hu N; Song S
    Adv Mater; 2022 Sep; 34(39):e2205560. PubMed ID: 35962756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-step achieving high performance all-solid-state and all-in-one flexible electrochromic supercapacitor by polymer dispersed electrochromic device strategy.
    Ling H; Zhang J; Wang Y; Zeng X
    J Colloid Interface Sci; 2024 Jul; 665():969-976. PubMed ID: 38569313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Textile Based Electrochromic Cells Prepared with PEDOT: PSS and Gelled Electrolyte.
    Graßmann C; Mann M; Van Langenhove L; Schwarz-Pfeiffer A
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design Strategies for High Reflectivity Contrast and Stability Adaptive Camouflage Electrochromic Supercapacitors.
    Shao M; Dong J; Lv X; Zhou C; Xia M; Liu C; Ouyang M; Zhang C
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58723-58733. PubMed ID: 38055918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rechargeable Zn
    Eric H; Li H; Adulhakem Y E
    RSC Adv; 2019 Oct; 9(55):32047-32057. PubMed ID: 35530757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.