These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38697344)
1. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Maslanka R; Bednarska S; Zadrag-Tecza R Arch Biochem Biophys; 2024 Jun; 756():110021. PubMed ID: 38697344 [TBL] [Abstract][Full Text] [Related]
2. Reproductive Potential of Yeast Cells Depends on Overall Action of Interconnected Changes in Central Carbon Metabolism, Cellular Biosynthetic Capacity, and Proteostasis. Maslanka R; Zadrag-Tecza R Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33022992 [TBL] [Abstract][Full Text] [Related]
3. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
4. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783 [TBL] [Abstract][Full Text] [Related]
5. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466 [TBL] [Abstract][Full Text] [Related]
6. Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae. Caubet R; Guerin B; Guerin M Arch Microbiol; 1988; 149(4):324-9. PubMed ID: 2833196 [TBL] [Abstract][Full Text] [Related]
7. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. Matsushika A; Nagashima A; Goshima T; Hoshino T PLoS One; 2013; 8(7):e69005. PubMed ID: 23874849 [TBL] [Abstract][Full Text] [Related]
8. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505 [TBL] [Abstract][Full Text] [Related]
9. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose. Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131 [TBL] [Abstract][Full Text] [Related]
10. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Morelli AM; Scholkmann F Biochimie; 2024 Jun; 221():99-109. PubMed ID: 38307246 [TBL] [Abstract][Full Text] [Related]
11. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. Jouhten P; Rintala E; Huuskonen A; Tamminen A; Toivari M; Wiebe M; Ruohonen L; Penttilä M; Maaheimo H BMC Syst Biol; 2008 Jul; 2():60. PubMed ID: 18613954 [TBL] [Abstract][Full Text] [Related]
12. Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast Van Leemputte F; Vanthienen W; Wijnants S; Van Zeebroeck G; Thevelein JM mBio; 2020 Oct; 11(5):. PubMed ID: 33109759 [TBL] [Abstract][Full Text] [Related]
13. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Fiaux J; Cakar ZP; Sonderegger M; Wüthrich K; Szyperski T; Sauer U Eukaryot Cell; 2003 Feb; 2(1):170-80. PubMed ID: 12582134 [TBL] [Abstract][Full Text] [Related]
14. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Runquist D; Hahn-Hägerdal B; Bettiga M Microb Cell Fact; 2009 Sep; 8():49. PubMed ID: 19778438 [TBL] [Abstract][Full Text] [Related]
15. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380 [TBL] [Abstract][Full Text] [Related]
16. Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Pernambuco MB; Winderickx J; Crauwels M; Griffioen G; Mager WH; Thevelein JM Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1775-82. PubMed ID: 8757741 [TBL] [Abstract][Full Text] [Related]
17. Less is more or more is less: Implications of glucose metabolism in the regulation of the reproductive potential and total lifespan of the Saccharomyces cerevisiae yeast. Maslanka R; Zadrag-Tecza R J Cell Physiol; 2019 Aug; 234(10):17622-17638. PubMed ID: 30805924 [TBL] [Abstract][Full Text] [Related]
18. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Dynesen J; Smits HP; Olsson L; Nielsen J Appl Microbiol Biotechnol; 1998 Nov; 50(5):579-82. PubMed ID: 9866176 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Cadière A; Ortiz-Julien A; Camarasa C; Dequin S Metab Eng; 2011 May; 13(3):263-71. PubMed ID: 21300171 [TBL] [Abstract][Full Text] [Related]
20. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]