These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38697488)
1. Priming with oncolytic adenovirus followed by anti-PD-1 and paclitaxel treatment leads to improved anti-cancer efficacy in the 3D TNBC model. Kuryk L; Mathlouthi S; Wieczorek M; Gad B; Rinner B; Malfanti A; Mastrotto F; Salmaso S; Caliceti P; Garofalo M Eur J Pharm Biopharm; 2024 Jun; 199():114300. PubMed ID: 38697488 [TBL] [Abstract][Full Text] [Related]
2. A dual-functional oncolytic adenovirus ZD55-aPD-L1 scFv armed with PD-L1 inhibitor potentiates its antitumor activity. Mei S; Peng S; Vong EG; Zhan J Int Immunopharmacol; 2024 Feb; 128():111579. PubMed ID: 38278066 [TBL] [Abstract][Full Text] [Related]
3. Novel combinatorial therapy of oncolytic adenovirus AdV5/3-D24-ICOSL-CD40L with anti PD-1 exhibits enhanced anti-cancer efficacy through promotion of intratumoral T-cell infiltration and modulation of tumour microenvironment in mesothelioma mouse model. Garofalo M; Wieczorek M; Anders I; Staniszewska M; Lazniewski M; Prygiel M; Zasada AA; Szczepińska T; Plewczynski D; Salmaso S; Caliceti P; Cerullo V; Alemany R; Rinner B; Pancer K; Kuryk L Front Oncol; 2023; 13():1259314. PubMed ID: 38053658 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic impact of Nintedanib with paclitaxel and/or a PD-L1 antibody in preclinical models of orthotopic primary or metastatic triple negative breast cancer. Reguera-Nuñez E; Xu P; Chow A; Man S; Hilberg F; Kerbel RS J Exp Clin Cancer Res; 2019 Jan; 38(1):16. PubMed ID: 30635009 [TBL] [Abstract][Full Text] [Related]
5. Novel insights into paclitaxel's role on tumor-associated macrophages in enhancing PD-1 blockade in breast cancer treatment. Choi Y; Kim SA; Jung H; Kim E; Kim YK; Kim S; Kim J; Lee Y; Jo MK; Woo J; Cho Y; Lee D; Choi H; Jeong C; Nam GH; Kwon M; Kim IS J Immunother Cancer; 2024 Jul; 12(7):. PubMed ID: 39009452 [TBL] [Abstract][Full Text] [Related]
6. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. Camorani S; Passariello M; Agnello L; Esposito S; Collina F; Cantile M; Di Bonito M; Ulasov IV; Fedele M; Zannetti A; De Lorenzo C; Cerchia L J Exp Clin Cancer Res; 2020 Sep; 39(1):180. PubMed ID: 32892748 [TBL] [Abstract][Full Text] [Related]
7. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment. Zhang Y; Han X; Wang K; Liu D; Ding X; Hu Z; Wang J Int J Nanomedicine; 2023; 18():4329-4346. PubMed ID: 37545872 [TBL] [Abstract][Full Text] [Related]
8. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004 [TBL] [Abstract][Full Text] [Related]
9. An Oncolytic Adenovirus Targeting Transforming Growth Factor β Inhibits Protumorigenic Signals and Produces Immune Activation: A Novel Approach to Enhance Anti-PD-1 and Anti-CTLA-4 Therapy. Yang Y; Xu W; Peng D; Wang H; Zhang X; Wang H; Xiao F; Zhu Y; Ji Y; Gulukota K; Helseth DL; Mangold KA; Sullivan M; Kaul K; Wang E; Prabhakar BS; Li J; Wu X; Wang L; Seth P Hum Gene Ther; 2019 Sep; 30(9):1117-1132. PubMed ID: 31126191 [TBL] [Abstract][Full Text] [Related]
11. Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model. Zhang H; Xie W; Zhang Y; Dong X; Liu C; Yi J; Zhang S; Wen C; Zheng L; Wang H Cancer Gene Ther; 2022 May; 29(5):456-465. PubMed ID: 34561555 [TBL] [Abstract][Full Text] [Related]
12. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Chaurasiya S; Yang A; Kang S; Lu J; Kim SI; Park AK; Sivanandam V; Zhang Z; Woo Y; Warner SG; Fong Y Oncoimmunology; 2020; 9(1):1729300. PubMed ID: 32158622 [TBL] [Abstract][Full Text] [Related]
14. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines. Ye J; Xia X; Dong W; Hao H; Meng L; Yang Y; Wang R; Lyu Y; Liu Y Int J Nanomedicine; 2016; 11():4125-40. PubMed ID: 27601899 [TBL] [Abstract][Full Text] [Related]
15. RX-5902, a novel β-catenin modulator, potentiates the efficacy of immune checkpoint inhibitors in preclinical models of triple-negative breast Cancer. Tentler JJ; Lang J; Capasso A; Kim DJ; Benaim E; Lee YB; Eisen A; Bagby SM; Hartman SJ; Yacob BW; Gittleman B; Pitts TM; Pelanda R; Eckhardt SG; Diamond JR BMC Cancer; 2020 Nov; 20(1):1063. PubMed ID: 33148223 [TBL] [Abstract][Full Text] [Related]
16. CCAAT enhancer binding protein delta activates vesicle associated membrane protein 3 transcription to enhance chemoresistance and extracellular PD-L1 expression in triple-negative breast cancer. Zhao Y; Yu Y; Li X; Guo A J Exp Clin Cancer Res; 2024 Apr; 43(1):115. PubMed ID: 38627816 [TBL] [Abstract][Full Text] [Related]
18. Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Kasala D; Lee SH; Hong JW; Choi JW; Nam K; Chung YH; Kim SW; Yun CO Biomaterials; 2017 Nov; 145():207-222. PubMed ID: 28869866 [TBL] [Abstract][Full Text] [Related]
19. Combination of novel oncolytic herpesvirus with paclitaxel as an efficient strategy for breast cancer therapy. Deng X; Shen Y; Yi M; Zhang C; Zhao B; Zhong G; WeiyangLou ; Xue D; Leng Q; Ding J; Zhao R; Jia W; Dong C; Dai Z J Med Virol; 2023 May; 95(5):e28768. PubMed ID: 37212336 [TBL] [Abstract][Full Text] [Related]
20. LyP-1-Modified Oncolytic Adenoviruses Targeting Transforming Growth Factor β Inhibit Tumor Growth and Metastases and Augment Immune Checkpoint Inhibitor Therapy in Breast Cancer Mouse Models. Xu W; Yang Y; Hu Z; Head M; Mangold KA; Sullivan M; Wang E; Saha P; Gulukota K; Helseth DL; Guise T; Prabhkar BS; Kaul K; Schreiber H; Seth P Hum Gene Ther; 2020 Aug; 31(15-16):863-880. PubMed ID: 32394753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]