These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38697488)
21. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy. Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476 [TBL] [Abstract][Full Text] [Related]
22. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Duan T; Xu Z; Sun F; Wang Y; Zhang J; Luo C; Wang M Biomed Pharmacother; 2019 Sep; 117():109121. PubMed ID: 31252265 [TBL] [Abstract][Full Text] [Related]
23. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. Ju F; Luo Y; Lin C; Jia X; Xu Z; Tian R; Lin Y; Zhao M; Chang Y; Huang X; Li S; Ren W; Qin Y; Yu M; Jia J; Han J; Luo W; Zhang J; Fu G; Ye X; Huang C; Xia N J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35688558 [TBL] [Abstract][Full Text] [Related]
24. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Bourgeois-Daigneault MC; St-Germain LE; Roy DG; Pelin A; Aitken AS; Arulanandam R; Falls T; Garcia V; Diallo JS; Bell JC Breast Cancer Res; 2016 Aug; 18(1):83. PubMed ID: 27503504 [TBL] [Abstract][Full Text] [Related]
25. Pembrolizumab and atezolizumab in triple-negative breast cancer. Kwapisz D Cancer Immunol Immunother; 2021 Mar; 70(3):607-617. PubMed ID: 33015734 [TBL] [Abstract][Full Text] [Related]
26. Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting. Clubb JHA; Kudling TV; Girych M; Haybout L; Pakola S; Hamdan F; Cervera-Carrascon V; Hemmes A; Grönberg-Vähä-Koskela S; Santos JM; Quixabeira DCA; Basnet S; Heiniö C; Arias V; Jirovec E; Kaptan S; Havunen R; Sorsa S; Erikat A; Schwartz J; Anttila M; Aro K; Viitala T; Vattulainen I; Cerullo V; Kanerva A; Hemminki A Front Immunol; 2023; 14():1060540. PubMed ID: 36817448 [TBL] [Abstract][Full Text] [Related]
27. Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma. Mochizuki Y; Tazawa H; Demiya K; Kure M; Kondo H; Komatsubara T; Sugiu K; Hasei J; Yoshida A; Kunisada T; Urata Y; Kagawa S; Ozaki T; Fujiwara T Cancer Immunol Immunother; 2021 May; 70(5):1405-1417. PubMed ID: 33151368 [TBL] [Abstract][Full Text] [Related]
28. Personalized neoantigen viro-immunotherapy platform for triple-negative breast cancer. Brito Baleeiro R; Liu P; Chard Dunmall LS; Di Gioia C; Nagano A; Cutmore L; Wang J; Chelala C; Nyambura LW; Walden P; Lemoine N; Wang Y J Immunother Cancer; 2023 Aug; 11(8):. PubMed ID: 37586771 [TBL] [Abstract][Full Text] [Related]
29. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts. Capasso A; Lang J; Pitts TM; Jordan KR; Lieu CH; Davis SL; Diamond JR; Kopetz S; Barbee J; Peterson J; Freed BM; Yacob BW; Bagby SM; Messersmith WA; Slansky JE; Pelanda R; Eckhardt SG J Immunother Cancer; 2019 Feb; 7(1):37. PubMed ID: 30736857 [TBL] [Abstract][Full Text] [Related]
30. Oncolytic virus driven T-cell-based combination immunotherapy platform for colorectal cancer. Crupi MJF; Taha Z; Janssen TJA; Petryk J; Boulton S; Alluqmani N; Jirovec A; Kassas O; Khan ST; Vallati S; Lee E; Huang BZ; Huh M; Pikor L; He X; Marius R; Austin B; Duong J; Pelin A; Neault S; Azad T; Breitbach CJ; Stojdl DF; Burgess MF; McComb S; Auer R; Diallo JS; Ilkow CS; Bell JC Front Immunol; 2022; 13():1029269. PubMed ID: 36405739 [TBL] [Abstract][Full Text] [Related]
31. Enhanced therapeutic efficacy of an adenovirus-PEI-bile-acid complex in tumors with low coxsackie and adenovirus receptor expression. Lee CH; Kasala D; Na Y; Lee MS; Kim SW; Jeong JH; Yun CO Biomaterials; 2014 Jul; 35(21):5505-16. PubMed ID: 24731708 [TBL] [Abstract][Full Text] [Related]
32. A novel Fc-engineered cathepsin D-targeting antibody enhances ADCC, triggers tumor-infiltrating NK cell recruitment, and improves treatment with paclitaxel and enzalutamide in triple-negative breast cancer. Desroys du Roure P; Lajoie L; Mallavialle A; Alcaraz LB; Mansouri H; Fenou L; Garambois V; Rubio L; David T; Coenon L; Boissière-Michot F; Chateau MC; Ngo G; Jarlier M; Villalba M; Martineau P; Laurent-Matha V; Roger P; Guiu S; Chardès T; Gros L; Liaudet-Coopman E J Immunother Cancer; 2024 Jan; 12(1):. PubMed ID: 38290768 [TBL] [Abstract][Full Text] [Related]
33. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977 [TBL] [Abstract][Full Text] [Related]
34. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Zhu W; Zhang H; Shi Y; Song M; Zhu B; Wei L Cancer Biol Ther; 2013 Nov; 14(11):1016-23. PubMed ID: 24025362 [TBL] [Abstract][Full Text] [Related]
35. Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer. Clubb JHA; Kudling TV; Heiniö C; Basnet S; Pakola S; Cervera Carrascón V; Santos JM; Quixabeira DCA; Havunen R; Sorsa S; Zheng V; Salo T; Bäck L; Aro K; Tulokas S; Loimu V; Hemminki A Front Immunol; 2022; 13():794251. PubMed ID: 35355980 [TBL] [Abstract][Full Text] [Related]
36. Progress and pitfalls in the use of immunotherapy for patients with triple negative breast cancer. Agostinetto E; Losurdo A; Nader-Marta G; Santoro A; Punie K; Barroso R; Popovic L; Solinas C; Kok M; de Azambuja E; Lambertini M Expert Opin Investig Drugs; 2022 Jun; 31(6):567-591. PubMed ID: 35240902 [TBL] [Abstract][Full Text] [Related]
37. Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade. Chon HJ; Lee WS; Yang H; Kong SJ; Lee NK; Moon ES; Choi J; Han EC; Kim JH; Ahn JB; Kim JH; Kim C Clin Cancer Res; 2019 Mar; 25(5):1612-1623. PubMed ID: 30538109 [TBL] [Abstract][Full Text] [Related]
38. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. Thomas S; Kuncheria L; Roulstone V; Kyula JN; Mansfield D; Bommareddy PK; Smith H; Kaufman HL; Harrington KJ; Coffin RS J Immunother Cancer; 2019 Aug; 7(1):214. PubMed ID: 31399043 [TBL] [Abstract][Full Text] [Related]
39. Surface engineering of oncolytic adenovirus for a combination of immune checkpoint blockade and virotherapy. Lv P; Chen X; Fu S; Ren E; Liu C; Liu X; Jiang L; Zeng Y; Wang X; Liu G Biomater Sci; 2021 Nov; 9(22):7392-7401. PubMed ID: 34751685 [TBL] [Abstract][Full Text] [Related]
40. New hopes for the breast cancer treatment: perspectives on the oncolytic virus therapy. Chowaniec H; Ślubowska A; Mroczek M; Borowczyk M; Braszka M; Dworacki G; Dobosz P; Wichtowski M Front Immunol; 2024; 15():1375433. PubMed ID: 38576614 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]