These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38697551)

  • 1. Hydrological variability of middle European peatland during the Holocene, inferred from subfossil bog pine and bog oak dendrochronology and high-resolution peat multiproxy analysis of the Budwity peatland (northern Poland).
    Margielewski W; Krąpiec M; Buczek K; Szychowska-Krąpiec E; Korzeń K; Niska M; Stachowicz-Rybka R; Wojtal AZ; Mroczkowska A; Obidowicz A; Sala D; Drzewicki W; Barniak J; Urban J
    Sci Total Environ; 2024 Jun; 931():172925. PubMed ID: 38697551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.
    Smiljanić M; Seo JW; Läänelaid A; van der Maaten-Theunissen M; Stajić B; Wilmking M
    Sci Total Environ; 2014 Dec; 500-501():52-63. PubMed ID: 25217744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.
    Kumaran NK; Padmalal D; Limaye RB; S VM; Jennerjahn T; Gamre PG
    PLoS One; 2016; 11(5):e0154297. PubMed ID: 27163658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene.
    Tsyganov AN; Zarov EA; Mazei YA; Kulkov MG; Babeshko KV; Yushkovets SY; Payne RJ; Ratcliffe JL; Fatyunina YA; Zazovskaya EP; Lapshina ED
    Ambio; 2021 Nov; 50(11):1896-1909. PubMed ID: 33825155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP.
    Liu H; Gu Y; Qin Y; Yu Z; Huang X; Xie S; Zheng M; Zhang Z; Cheng S
    Sci Total Environ; 2021 Feb; 757():143990. PubMed ID: 33316522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecosystem state shifts during long-term development of an Amazonian peatland.
    Swindles GT; Morris PJ; Whitney B; Galloway JM; Gałka M; Gallego-Sala A; Macumber AL; Mullan D; Smith MW; Amesbury MJ; Roland TP; Sanei H; Patterson RT; Sanderson N; Parry L; Charman DJ; Lopez O; Valderamma E; Watson EJ; Ivanovic RF; Valdes PJ; Turner TE; Lähteenoja O
    Glob Chang Biol; 2018 Feb; 24(2):738-757. PubMed ID: 29055083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subfossil markers of climate change during the Roman Warm Period of the late Holocene.
    Jach R; Knutelski S; Uchman A; Hercman H; Dohnalik M
    Naturwissenschaften; 2017 Dec; 105(1-2):6. PubMed ID: 29282537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition.
    Yang Q; Liu Z; Bai E
    Glob Chang Biol; 2023 Nov; 29(22):6350-6366. PubMed ID: 37602716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water quality effects of peat rewetting and leftover conifer brash, following peatland restoration and tree harvesting.
    Gaffney PPJ; Tang Q; Pap S; McWilliam A; Johnstone J; Li Y; Cakin I; Klein D; Taggart MA
    J Environ Manage; 2024 Jun; 360():121141. PubMed ID: 38781874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climatic controls on the dynamic lateral expansion of northern peatlands and its potential implication for the 'anomalous' atmospheric CH
    Peng H; Nijp JJ; Ratcliffe JL; Li C; Hong B; Lidberg W; Zeng M; Mauquoy D; Bishop K; Nilsson MB
    Sci Total Environ; 2024 Jan; 908():168450. PubMed ID: 37967626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased tree establishment in Lithuanian peat bogs--insights from field and remotely sensed approaches.
    Edvardsson J; Šimanauskienė R; Taminskas J; Baužienė I; Stoffel M
    Sci Total Environ; 2015 Feb; 505():113-20. PubMed ID: 25310886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data.
    Kajukało K; Fiałkiewicz-Kozieł B; Gałka M; Kołaczek P; Lamentowicz M
    Eur J Protistol; 2016 Sep; 55(Pt B):165-180. PubMed ID: 27133775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing soil carbon dioxide and methane fluxes from a Scots pine raised bog-edge-woodland.
    Mazzola V; Perks MP; Smith J; Yeluripati J; Xenakis G
    J Environ Manage; 2022 Jan; 302(Pt B):114061. PubMed ID: 34800769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different patterns of genetic structure of relict and isolated populations of endangered peat-bog pine (Pinus uliginosa Neumann).
    Wachowiak W; Prus-Glowacki W
    J Appl Genet; 2009; 50(4):329-39. PubMed ID: 19875883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing natural conditions and their impact on the Mt. Śnieżnica landscape, Outer Western Carpathians - Reconstruction of the Holocene environment based on geochemical indices and radiocarbon dating.
    Pawlik Ł; Okupny D; Kroh P; Cybul P; Stachowicz-Rybka R; Sady-Bugajska A
    Sci Total Environ; 2022 Dec; 850():158066. PubMed ID: 35985579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of Hani peatland in the Changbai mountains (NE China) and its response to the variations of the East Asian summer monsoon.
    Zhang M; Bu Z; Jiang M; Wang S; Liu S; Chen X; Hao J; Liao W
    Sci Total Environ; 2019 Nov; 692():818-832. PubMed ID: 31539988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of phosphorus forms in surface soils of typical peatlands in northern Great Khingan Mountains and its potential to reconstruct paleo-vegetations.
    Li Y; Gao C; Liu H; Han D; Cong J; Li X; Wang G
    J Environ Manage; 2022 Jan; 302(Pt B):114033. PubMed ID: 34763188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil CO2 efflux in a mixed pine-oak forest in Valsaín (central Spain).
    Inclán R; De la Torre D; Benito M; Rubio A
    ScientificWorldJournal; 2007 Mar; 7 Suppl 1():166-74. PubMed ID: 17450294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging forest-peatland bistability and resilience of European peatland carbon stores.
    van der Velde Y; Temme AJAM; Nijp JJ; Braakhekke MC; van Voorn GAK; Dekker SC; Dolman AJ; Wallinga J; Devito KJ; Kettridge N; Mendoza CA; Kooistra L; Soons MB; Teuling AJ
    Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34521751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of recent climate change on carbon sequestration in peatland systems.
    Lunt PH; Fyfe RM; Tappin AD
    Sci Total Environ; 2019 Jun; 667():348-358. PubMed ID: 30833238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.