These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38697651)
21. Uncovering universal rules governing the selectivity of the archetypal DNA glycosylase TDG. Dodd T; Yan C; Kossmann BR; Martin K; Ivanov I Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5974-5979. PubMed ID: 29784784 [TBL] [Abstract][Full Text] [Related]
22. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. McLaughlin D; Coey CT; Yang WC; Drohat AC; Matunis MJ J Biol Chem; 2016 Apr; 291(17):9014-24. PubMed ID: 26917720 [TBL] [Abstract][Full Text] [Related]
23. Dynamics of the excised base release in thymine DNA glycosylase during DNA repair process. Da LT; Shi Y; Ning G; Yu J Nucleic Acids Res; 2018 Jan; 46(2):568-581. PubMed ID: 29253232 [TBL] [Abstract][Full Text] [Related]
24. Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant. Hashimoto H; Zhang X; Cheng X J Mol Biol; 2013 Mar; 425(6):971-6. PubMed ID: 23337108 [TBL] [Abstract][Full Text] [Related]
25. Chromatin Structure and the Pioneering Transcription Factor FOXA1 Regulate TDG-Mediated Removal of 5-Formylcytosine from DNA. Deckard CE; Banerjee DR; Sczepanski JT J Am Chem Soc; 2019 Sep; 141(36):14110-14114. PubMed ID: 31460763 [TBL] [Abstract][Full Text] [Related]
26. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Szulik MW; Pallan PS; Nocek B; Voehler M; Banerjee S; Brooks S; Joachimiak A; Egli M; Eichman BF; Stone MP Biochemistry; 2015 Feb; 54(5):1294-305. PubMed ID: 25632825 [TBL] [Abstract][Full Text] [Related]
27. Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase. Madabushi A; Hwang BJ; Jin J; Lu AL Biochem J; 2013 Nov; 456(1):89-98. PubMed ID: 23952905 [TBL] [Abstract][Full Text] [Related]
28. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813 [TBL] [Abstract][Full Text] [Related]
29. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Coey CT; Malik SS; Pidugu LS; Varney KM; Pozharski E; Drohat AC Nucleic Acids Res; 2016 Dec; 44(21):10248-10258. PubMed ID: 27580719 [TBL] [Abstract][Full Text] [Related]
30. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Kitsera N; Allgayer J; Parsa E; Geier N; Rossa M; Carell T; Khobta A Nucleic Acids Res; 2017 Nov; 45(19):11033-11042. PubMed ID: 28977475 [TBL] [Abstract][Full Text] [Related]
31. Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH. Hashimoto H; Zhang X; Cheng X DNA Repair (Amst); 2013 Jul; 12(7):535-40. PubMed ID: 23680598 [TBL] [Abstract][Full Text] [Related]
32. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106 [TBL] [Abstract][Full Text] [Related]
33. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. Maiti A; Morgan MT; Drohat AC J Biol Chem; 2009 Dec; 284(52):36680-36688. PubMed ID: 19880517 [TBL] [Abstract][Full Text] [Related]
34. Key structural motifs in Thymine DNA glycosylase responsible for recognizing certain DNA bent conformation revealed by atomic simulations. Li S; Da LT Biochem Biophys Res Commun; 2020 Jun; 526(4):953-959. PubMed ID: 32291075 [TBL] [Abstract][Full Text] [Related]
35. Gadd45a promotes DNA demethylation through TDG. Li Z; Gu TP; Weber AR; Shen JZ; Li BZ; Xie ZG; Yin R; Guo F; Liu X; Tang F; Wang H; Schär P; Xu GL Nucleic Acids Res; 2015 Apr; 43(8):3986-97. PubMed ID: 25845601 [TBL] [Abstract][Full Text] [Related]
36. QM/MM Study of the Uracil DNA Glycosylase Reaction Mechanism: A Competition between Asp145 and His148. Naydenova E; Roßbach S; Ochsenfeld C J Chem Theory Comput; 2019 Aug; 15(8):4344-4350. PubMed ID: 31318548 [TBL] [Abstract][Full Text] [Related]
37. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG. Morgan MT; Bennett MT; Drohat AC J Biol Chem; 2007 Sep; 282(38):27578-86. PubMed ID: 17602166 [TBL] [Abstract][Full Text] [Related]
38. TET enzymes, TDG and the dynamics of DNA demethylation. Kohli RM; Zhang Y Nature; 2013 Oct; 502(7472):472-9. PubMed ID: 24153300 [TBL] [Abstract][Full Text] [Related]
39. Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process. Wang L; Song K; Yu J; Da LT Acta Biochim Biophys Sin (Shanghai); 2022 May; 54(6):796-806. PubMed ID: 35593467 [TBL] [Abstract][Full Text] [Related]
40. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex. Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]