These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38697942)

  • 1. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications.
    Mousavi SM; Nezhad FF; Ghahramani Y; Binazadeh M; Javidi Z; Azhdari R; Gholami A; Omidifar N; Rahman MM; Chiang WH
    Chem Biodivers; 2024 Jul; 21(7):e202301288. PubMed ID: 38697942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development.
    Zhou Y; Fang Y; Ramasamy RP
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube biosensors based on electrochemical detection.
    Pumera M
    Methods Mol Biol; 2010; 625():205-12. PubMed ID: 20422392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in research on carbon nanotube-polymer composites.
    Byrne MT; Gun'ko YK
    Adv Mater; 2010 Apr; 22(15):1672-88. PubMed ID: 20496401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors.
    Yang M; Yang Y; Liu Y; Shen G; Yu R
    Biosens Bioelectron; 2006 Jan; 21(7):1125-31. PubMed ID: 15885999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.
    Claussen JC; Kim SS; Haque AU; Artiles MS; Porterfield DM; Fisher TS
    J Diabetes Sci Technol; 2010 Mar; 4(2):312-9. PubMed ID: 20307391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes (CNTs) for the development of electrochemical biosensors.
    Lin Y; Yantasee W; Wang J
    Front Biosci; 2005 Jan; 10():492-505. PubMed ID: 15574386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP.
    Huang H; Liu M; Xu D; Mao L; Huang Q; Deng F; Tian J; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110157. PubMed ID: 31753361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in carbon nanotube based electrochemical biosensors.
    Gupta S; Murthy CN; Prabha CR
    Int J Biol Macromol; 2018 Mar; 108():687-703. PubMed ID: 29223757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer Composite Containing Carbon Nanotubes and their Applications.
    Park SH; Bae J
    Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotubes reinforced composites for biomedical applications.
    Wang W; Zhu Y; Liao S; Li J
    Biomed Res Int; 2014; 2014():518609. PubMed ID: 24707488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications.
    Meskher H; Ragdi T; Thakur AK; Ha S; Khelfaoui I; Sathyamurthy R; Sharshir SW; Pandey AK; Saidur R; Singh P; Sharifian Jazi F; Lynch I
    Crit Rev Anal Chem; 2024; 54(7):2398-2421. PubMed ID: 36724894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes.
    Kang X; Mai Z; Zou X; Cai P; Mo J
    Anal Biochem; 2007 Oct; 369(1):71-9. PubMed ID: 17678866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.
    Luong JH; Male KB; Hrapovic S
    Recent Pat Biotechnol; 2007; 1(2):181-91. PubMed ID: 19075840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-functionalized carbon nanotubes for biosensing applications.
    Sánchez-Pomales G; Santiago-Rodríguez L; Cabrera CR
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2175-88. PubMed ID: 19437957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanofiber-based composites for the construction of mediator-free biosensors.
    Lu X; Zhou J; Lu W; Liu Q; Li J
    Biosens Bioelectron; 2008 Mar; 23(8):1236-43. PubMed ID: 18083363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites.
    Joshi PP; Merchant SA; Wang Y; Schmidtke DW
    Anal Chem; 2005 May; 77(10):3183-8. PubMed ID: 15889907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.
    Shi Y; Zeng G; Xu D; Liu M; Wang K; Li Z; Fu L; Zhang Q; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():404-410. PubMed ID: 28866181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach for the fabrication of a flexible glucose biosensor: The combination of vertically aligned CNTs and a conjugated polymer.
    Gokoglan TC; Soylemez S; Kesik M; Dogru IB; Turel O; Yuksel R; Unalan HE; Toppare L
    Food Chem; 2017 Apr; 220():299-305. PubMed ID: 27855903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose biosensor based on carbon nanotube epoxy composites.
    Pérez B; Pumera M; del Valle M; Merkoçi A; Alegret S
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1694-8. PubMed ID: 16245530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.