These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38698130)

  • 1. Robust acoustic directional sensing enabled by synergy between resonator-based sensor and deep learning.
    Yu Z; Li X; Jung H; Harada M; Prokhorov D; Lee T
    Sci Rep; 2024 May; 14(1):10148. PubMed ID: 38698130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano-Like Acoustic Resonance for Subwavelength Directional Sensing: 0-360 Degree Measurement.
    Lee T; Nomura T; Su X; Iizuka H
    Adv Sci (Weinh); 2020 Mar; 7(6):1903101. PubMed ID: 32195101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave resonator array with liquid metal selection for narrow band material sensing.
    Wiltshire BD; Rafi MA; Zarifi MH
    Sci Rep; 2021 Apr; 11(1):8598. PubMed ID: 33883643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method for wideband characterization of resonator-based sensing platforms.
    Munir F; Wathen A; Hunt WD
    Rev Sci Instrum; 2011 Mar; 82(3):035119. PubMed ID: 21456800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mini-resonant photoacoustic sensor based on a sphere-cylinder coupled acoustic resonator for high-sensitivity trace gas sensing.
    Wu G; Zhang Y; Gong Z; Fan Y; Xing J; Wu X; Ma J; Peng W; Yu Q; Mei L
    Photoacoustics; 2024 Jun; 37():100595. PubMed ID: 38404402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern recognition in distributed fiber-optic acoustic sensor using an intensity and phase stacked convolutional neural network with data augmentation.
    Wu H; Zhou B; Zhu K; Shang C; Tam HY; Lu C
    Opt Express; 2021 Feb; 29(3):3269-3283. PubMed ID: 33770929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of deep neural networks for inferring pressure in polymeric acoustic transponders/sensors.
    Alaie S; Al'Aref SJ
    Mach Learn Appl; 2023 Sep; 13():. PubMed ID: 38037627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic Sensing Performance Investigation Based on Grooves Etched in the Ring Resonators.
    Han Y; Zheng Y; Li N; Luo Y; Xue C; Bai J; Chen J
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection.
    Gao F; Bermak A; Benchabane S; Robert L; Khelif A
    Microsyst Nanoeng; 2021; 7():8. PubMed ID: 33489307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Helical Gearbox Defects from Raw Vibration Signal Using Convolutional Neural Networks.
    Lupea I; Lupea M
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based Speech Enhancement of an Extrinsic Fabry-Perot Interferometric Fiber Acoustic Sensor System.
    Chai S; Guo C; Guan C; Fang L
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels.
    González D; Alvarez J; Sánchez JA; Godino L; Pombo I
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and Fault Detection of Brushless Direct Current Motor by Deep Learning Sensor Data Fusion.
    Suawa P; Meisel T; Jongmanns M; Huebner M; Reichenbach M
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrahigh sensitivity acoustic sensor system for weak signal detection based on an ultrahigh-
    Xing T; Xing E; Jia T; Li J; Rong J; Li L; Tian S; Zhou Y; Liu W; Tang J; Liu J
    Microsyst Nanoeng; 2023; 9():65. PubMed ID: 37213821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative Spectrum Sensing Based on Multi-Features Combination Network in Cognitive Radio Network.
    Xu M; Yin Z; Zhao Y; Wu Z
    Entropy (Basel); 2022 Jan; 24(1):. PubMed ID: 35052155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Band MEMS Directional Acoustic Sensor for Near Resonance Operation.
    Alves F; Rabelo R; Karunasiri G
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.
    Halim D; Cheng L; Su Z
    J Acoust Soc Am; 2011 Mar; 129(3):1390-9. PubMed ID: 21428503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Phase and Quadrature Analysis for Amplitude and Frequency Modulations Due to Vibrations on a Surface-Acoustic-Wave Resonator.
    Maskay A; Hummels DM; Pereira Da Cunha M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):91-100. PubMed ID: 30307860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator.
    Yao M; Zhang Y; Ouyang X; Ping Zhang A; Tam HY; Wai PKA
    Opt Lett; 2020 Jul; 45(13):3516-3519. PubMed ID: 32630887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.