These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38698603)

  • 1. Direct Electrodeposition of Electrically Conducting Ni
    Behboudikhiavi S; Chanteux G; Babu B; Faniel S; Marlec F; Robert K; Magnin D; Lucaccioni F; Omale JO; Apostol P; Piraux L; Lethien C; Vlad A
    Small; 2024 Sep; 20(36):e2401509. PubMed ID: 38698603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive Ni
    Zhao W; Chen T; Wang W; Jin B; Peng J; Bi S; Jiang M; Liu S; Zhao Q; Huang W
    Sci Bull (Beijing); 2020 Nov; 65(21):1803-1811. PubMed ID: 36659120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application.
    Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR
    Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined Synthesis of Oriented Two-Dimensional Ni
    Liu XH; Yang YW; Liu XM; Hao Q; Wang LM; Sun B; Wu J; Wang D
    Langmuir; 2020 Jul; 36(26):7528-7532. PubMed ID: 32513012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of a conductive Ni
    Nazir A; Le HTT; Min CW; Kasbe A; Kim J; Jin CS; Park CJ
    Nanoscale; 2020 Jan; 12(3):1629-1642. PubMed ID: 31872835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H
    Wu X; Tian X; Zhang W; Peng X; Zhou S; Buenconsejo PJS; Li Y; Xiao S; Tao J; Zhang M; Yuan H
    Angew Chem Int Ed Engl; 2024 Dec; 63(49):e202410411. PubMed ID: 39187431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing.
    Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-to-Semiconductor Transition in Two-Dimensional Metal-Organic Frameworks: An
    Zhang Z; Dell'Angelo D; Momeni MR; Shi Y; Shakib FA
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25270-25279. PubMed ID: 34015222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why conductivity is not always king - physical properties governing the capacitance of 2D metal-organic framework-based EDLC supercapacitor electrodes: a Ni
    Borysiewicz MA; Dou JH; Stassen I; Dincă M
    Faraday Discuss; 2021 Oct; 231(0):298-304. PubMed ID: 34259286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution.
    Chen S; Dai J; Zeng XC
    Phys Chem Chem Phys; 2015 Feb; 17(8):5954-8. PubMed ID: 25636056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Doping and Structural Modulation of Conductive Metal-Organic Frameworks.
    Zhou S; Liu T; Strømme M; Xu C
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202318387. PubMed ID: 38349735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing platform for the highly sensitive detection of catechol based on composite coupling with conductive Ni
    Xu Y; Ben Y; Sun L; Su J; Guo H; Zhou R; Wei Y; Wei Y; Lu Y; Sun Y; Zhang X
    Phys Chem Chem Phys; 2024 Jan; 26(4):2951-2962. PubMed ID: 38214187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesizing Cr-Based Two-Dimensional Conjugated Metal-Organic Framework Through On-Surface Substitution Reaction.
    Zhong W; Zhang T; Chen D; Su N; Miao G; Guo J; Chen L; Wang Z; Wang W
    Small; 2023 May; 19(21):e2207877. PubMed ID: 36843315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Crystalline Microporous Membrane from 2D MOF Nanosheets for Gas Separation.
    Jiang S; Shi X; Sun F; Zhu G
    Chem Asian J; 2020 Aug; 15(15):2371-2378. PubMed ID: 32249501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.
    Miner EM; Fukushima T; Sheberla D; Sun L; Surendranath Y; Dincă M
    Nat Commun; 2016 Mar; 7():10942. PubMed ID: 26952523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-Mediated Hydrogenic Defects in Two-Dimensional Electrically Conductive Metal-Organic Frameworks.
    Debela TT; Yang MC; Hendon CH
    J Am Chem Soc; 2023 May; 145(20):11387-11391. PubMed ID: 37141540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Electrocatalyst Pd(II)@Ni
    He Y; Li NH; Wen F; He Z; Wu Y; Lin SH; Jin T
    Chemistry; 2023 May; 29(27):e202203839. PubMed ID: 36793258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Highly Conductive MOF of Graphene Analogue Ni
    Cai D; Lu M; Li L; Cao J; Chen D; Tu H; Li J; Han W
    Small; 2019 Oct; 15(44):e1902605. PubMed ID: 31518060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Electrochemical Actuator under an Ultralow Driving Voltage with a Mixed Electronic-Ionic Conductive Metal-Organic Framework.
    Li Y; Yu P; Ma W; Mao L
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56158-56166. PubMed ID: 37976422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.