These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38698739)
1. Dual-Energy-Barrier Stable Superhydrophobic Structures for Long Icing Delay. Wang L; Li D; Jiang G; Hu X; Peng R; Song Z; Zhang H; Fan P; Zhong M ACS Nano; 2024 May; 18(19):12489-12502. PubMed ID: 38698739 [TBL] [Abstract][Full Text] [Related]
2. Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell? Wang L; Jiang G; Tian Z; Chen C; Hu X; Peng R; Zhang H; Fan P; Zhong M Mater Horiz; 2023 Jan; 10(1):209-220. PubMed ID: 36349895 [TBL] [Abstract][Full Text] [Related]
3. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. Pan R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114 [TBL] [Abstract][Full Text] [Related]
4. Xuan S; Yin H; Li G; Zhang Z; Jiao Y; Liao Z; Li J; Liu S; Wang Y; Tang C; Wu W; Li G; Yin K ACS Nano; 2023 Nov; 17(21):21749-21760. PubMed ID: 37843015 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous dewetting transitions of droplets during icing & melting cycle. Wang L; Tian Z; Jiang G; Luo X; Chen C; Hu X; Zhang H; Zhong M Nat Commun; 2022 Jan; 13(1):378. PubMed ID: 35046407 [TBL] [Abstract][Full Text] [Related]
6. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests. Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131 [TBL] [Abstract][Full Text] [Related]
7. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
8. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition. Giacomello A; Chinappi M; Meloni S; Casciola CM Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136 [TBL] [Abstract][Full Text] [Related]
9. Multi-Scale Superhydrophobic Surface with Excellent Stability and Solar-Thermal Performance for Highly Efficient Anti-Icing and Deicing. Zhang F; Yan H; Chen M Small; 2024 Aug; 20(32):e2312226. PubMed ID: 38511539 [TBL] [Abstract][Full Text] [Related]
10. Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier. Zuo Z; Liao R; Song X; Zhao X; Yuan Y RSC Adv; 2018 May; 8(36):19906-19916. PubMed ID: 35541649 [TBL] [Abstract][Full Text] [Related]
11. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces. Aldhaleai A; Tsai PA Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121 [TBL] [Abstract][Full Text] [Related]
12. Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces. Zhang Y; Klittich MR; Gao M; Dhinojwala A ACS Appl Mater Interfaces; 2017 Feb; 9(7):6512-6519. PubMed ID: 28117579 [TBL] [Abstract][Full Text] [Related]
13. Validating the Transition Criteria from the Cassie-Baxter to the Wenzel State for Periodically Pillared Surfaces with Lattice Boltzmann Simulations. Jäger T; Mokos A; Prasianakis NI; Leyer S ACS Omega; 2024 Mar; 9(9):10592-10601. PubMed ID: 38463292 [TBL] [Abstract][Full Text] [Related]
14. Free-energy landscapes of intrusion and extrusion of liquid in truncated and inverted truncated conical pores: Implications for the Cassie-Baxter to Wenzel transition. Iwamatsu M Phys Rev E; 2020 Nov; 102(5-1):052801. PubMed ID: 33327066 [TBL] [Abstract][Full Text] [Related]
15. Cassie-Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Giacomello A; Meloni S; Chinappi M; Casciola CM Langmuir; 2012 Jul; 28(29):10764-72. PubMed ID: 22708630 [TBL] [Abstract][Full Text] [Related]
16. Wetting Transition from the Cassie-Baxter State to the Wenzel State on Regularly Nanostructured Surfaces Induced by an Electric Field. Zhang BX; Wang SL; Wang XD Langmuir; 2019 Jan; 35(3):662-670. PubMed ID: 30601010 [TBL] [Abstract][Full Text] [Related]
17. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function. Wang H; He M; Liu H; Guan Y ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735 [TBL] [Abstract][Full Text] [Related]
18. Recent Advances in Multifunctional Mechanical-Chemical Superhydrophobic Materials. Luo Q; Peng J; Chen X; Zhang H; Deng X; Jin S; Zhu H Front Bioeng Biotechnol; 2022; 10():947327. PubMed ID: 35910015 [TBL] [Abstract][Full Text] [Related]
19. Ice Adhesion Properties on Micropillared Superhydrophobic Surfaces. Zhang H; Du H; Zhu D; Zhao H; Zhang X; He F; Wang L; Lv C; Hao P ACS Appl Mater Interfaces; 2024 Feb; 16(8):11084-11093. PubMed ID: 38362761 [TBL] [Abstract][Full Text] [Related]
20. Micro-Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance. Chen C; Tian Z; Luo X; Jiang G; Hu X; Wang L; Peng R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35535994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]